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The distribution characteristic of final-state particles is one of the significant parts in high-energy nuclear collisions. The transverse
momentum distribution of charged particles carries essential evolution information about the collision system. The Tsallis statistics
is used to investigate the transverse momentum distribution of charged particles produced in Xe-Xe collisions at

ffiffiffiffiffiffiffi
sNN

p = 5:44TeV.
On this basis, we reproduce the nuclear modification factor of the charged particles. The calculated results agree approximately with
the experimental data measured by the ALICE Collaboration.

1. Introduction

One of the major goals of high-energy nucleus-nucleus (AA)
collisions is to study quark-gluon plasma (QGP) at high
energy density and high temperature. The Large Hadron
Collider (LHC) has performed different species of colli-
sions at one or more energies, such as lead-lead, proton-
lead, and proton-proton collisions. The Xe-Xe ion collision
[1, 2] at

ffiffiffiffiffiffiffi
sNN

p = 5:44TeV is a new collision experiment
and is an intermediate-size collision system at the LHC.
Since the mass number value of xenon is between proton
and lead, it helps us to understand the system-scale effect
of the final-state particle properties in ion collisions at
high energy [3–6]. Compared with the sphere of the Pb
nucleus, the deformation of the Xe nucleus is long and
flattened in collisions. The deformed shape of Xe will pro-
vide us with different kinds of collision configurations.
The deformed Xe nucleus will affect the initial condition
of the reaction. How much impact does the deformation
have on particle production and distribution? Many
charged particles are produced and measured in the AA
collisions. The investigation of the particle spectra is of
great interest and is very helpful for comprehending the
collision reaction mechanism and the particle production

process in the different species of collision systems at dif-
ferent center-of-mass energies [7–13].

With respect to the final-state observations, the experi-
mental transverse momentum pT spectrum is of great sig-
nificance in understanding the production process of the
moving particles. In past years, theoretical efforts have been
carried out in statistical models to analyze the particle spec-
tra over a broad range of collision energies [14–18]. At
RHIC and LHC energies, the pT spectra have been investi-
gated intensively in various collision systems like Au+Au,
Pb+Pb, and pp at different energies. A statistical model
can achieve some features in treating the multiparticle sys-
tem in RHIC and LHC. Recently, the ALICE Collaboration
reported the pT spectra and nuclear modification factors of
charged particles produced in Xe-Xe collisions at

ffiffiffiffiffiffiffi
sNN

p =
5:44TeV [1]. The nuclear modification factor RAA is also
an important observation and can provide information
about the dynamics of QGP matter at extreme densities
and temperatures [19–26].

In this paper, we discuss the pT spectra and the nuclear
modification factor RAA in the Tsallis statistics. By the inves-
tigation of the pT spectra, we extract the parameters, which
provide the calculation foundation for the nuclear modifica-
tion factor RAA.
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2. Description of the Particle Distribution in the
Tsallis Statistics

The Tsallis statistics has been widely used to study the prop-
erties of final-state particles produced in nucleus-nucleus and
proton-proton collisions at high energy [27–30]. In The Tsal-
lis statistics, more than one version of the Tsallis distribution
is used to investigate particle distributions. According to the
Tsallis statistics, the number of the particles is

N = gV
ð

d3p

2πð Þ3 1 + q − 1ð ÞE − μ

T

� �− 1/q−1ð Þ
, ð1aÞ

N = gV
ð

d3p

2πð Þ3 1 + q − 1ð Þ E − μ

T

� �− q/q−1ð Þ
, ð1bÞ

where g and μ are the degeneracy factor and the chemical
potential of the multiparticle system, respectively. T and q
are the Tsallis temperature and the degree parameter of
deviation from equilibrium, respectively. The first equation
and second equation are two versions. The second equation
(equation (1b)) can naturally meet the thermodynamic con-
sistency [31–33]. At μ = 0, the transverse momentum distri-
bution is

d2N
dydpT
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The nuclear modification factor RAA acts as a probe to
understand the nuclear medium effect in the AA collision
and is a measure of the particle production modification.
It is typically expressed as a ratio of the particle pT spectra
in AA collisions to that in pp collisions:

RAA pTð Þ = d2NAA/dydpT
TAAh id2σpp/dydpT

, ð3Þ

where NAA is the production yield in AA collisions and σpp

is the production cross-section in pp collisions. The average
nuclear overlap function hTAAi is estimated via a Glauber
model of nuclear collisions. The RAA is also expressed as

RAA =
f fin
f in

, ð4Þ

where f in is the distribution of the initial particles produced
at an early time of the hadronization. Then, these particles
interact with the medium system. The function f fin is the
distribution of the final-state particles, which no longer
interact with each other.

According to the Boltzmann transport equation, the dis-
tribution of the particles f ðx, p, tÞ is

df x, p, tð Þ
dt

=
∂f
∂t

+ v ⋅ ∇x f + F ⋅ ∇p f = C f½ �: ð5Þ

The evolution of the particle distribution is attributed to
its interaction with the medium particles. The terms v and
F are the velocity and the external force, respectively. In
relaxation time approximation, the collision term C½ f � is
given by

C f½ � = −
f − f eq

τ
, ð6Þ

where τ is the relaxation time. The Boltzmann local equilib-
rium distribution f eq is

f eq =
gV

2πð Þ2 pTmTe
− mT /Teqð Þ, ð7Þ

where Teq is the equilibrium temperature of the QCD phase
transition. Considering ∇x f = 0 and F = 0, the distribution
of the particles f ðx, p, tÞ is

df x, p, tð Þ
dt

=
∂f
∂t

=
f − f eq

τ
: ð8Þ

A solution of the equation is

f fin = f eq + f in − f eq
� �

e− tf /τð Þ, ð9Þ

where tf is the freeze-out time. The initial distribution is
taken as the Tsallis distribution, i.e., equation (2). Therefore,
the final-state distribution is

f fin =
gV

2πð Þ2 pTmTe
− mT /Teqð Þ

+
gV

2πð Þ2 pTmT 1 + q − 1ð ÞmT

T

h i− q/q−1ð Þ�

− e− mT /Teqð Þ
�
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ð10Þ

Then, the nuclear modification factor RAA is obtained as

RAA =
f eq
f in

+ 1 −
f eq
f in

	 

e− tf /τð Þ
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e− mT /Teqð Þ
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The equation is the calculation basis of the nuclear mod-
ification factor. In the relaxation time approximation, the
RAA is derived in the Tsallis statistics.

3. Discussions and Conclusions

In this section, we discuss the transverse momentum spec-
tra and the nuclear modification factor of the charged par-
ticles produced in Xe-Xe collisions at

ffiffiffiffiffiffiffi
sNN

p = 5:44TeV.
The transverse momentum contributes significantly to
the characterization of the matter formed in high energy
collisions because pT is sensitive to the matter properties
at an early time. The transverse momentum spectra in
the kinematic range 0:15 < pT < 50GeV/c and jηj < 0:8
are presented for nine centrality classes in Figure 1. The
filled circles indicate the experimental data measured by
the ALICE Collaboration [1]. The lines are the results
of equation (2). The value of Teq is 0.24GeV. The model
results are in agreement with the experimental data. The
maximum value of χ2 is 0.942 and the minimum is
0.205. The other parameters used in the calculation are
listed in Table 1. The nonequilibrium degree q is a con-
stant value. The freeze-out time t increases with increasing
collision centrality. The final-state transverse momentum
spectra for different centralities are determined by the
temperature T , at which there are no interactions
between the final-state particles. By the analysis of the
pT spectra, the thermodynamics parameters are extracted.

The dotted lines are the results of the Boltzmann statis-
tics, which can agree with the experimental data in the
low pT range.

The nuclear modification factor is also an important
observation and is a measure of the particle-production
modification. In Figure 1, we compare the pT spectra of
the model results and the experiment data, and can extract
the parameters, which are required in the calculation of
the nuclear modification factor RAA. Figure 2 presents
the nuclear modification factor RAA of charged particles
as a function of pT in Xe-Xe at

ffiffiffiffiffiffiffi
sNN

p = 5:44 TeV collisions.
The filled circles indicate the experimental data measured
by the ALICE Collaboration [1]. The lines are the results
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Figure 1: Transverse momentum distributions of charged particles produced in the Xe-Xe collision at
ffiffiffiffiffiffiffi
sNN

p = 5:44TeV. The filled circles
indicate the experimental data in 0-5%, 5-10%, 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70%, and 70-80% centrality classes [1]. The
solid lines are the results of equation (2), and the dotted lines are the results of the Boltzmann statistics.

Table 1: Values of q, T , and t taken in Figure 1.

Centrality q T tf /τ
0-5% 1.125 0.196 1.581

5-10% 1.125 0.191 1.381

10-20% 1.125 0.187 1.005

20-30% 1.125 0.185 1.252

30-40% 1.125 0.180 0.788

40-50% 1.125 0.178 0.586

50-60% 1.125 0.175 0.360

60-70% 1.125 0.169 0.226

70-80% 1.125 0.165 0.115
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of equation (11). The parameters used in the calculation
are determined by the model results in Figure 1. The
nuclear modification factor RAA depends strongly on the
collision centrality. The RAA rises linearly at low pT (about
below 2.2GeV). At high pT , the RAA first declines linearly
and then rises slowly. The model can approximately
describe the nuclear modification factor at the high pT
region, as shown in Figure 3. The dotted lines are the
results of the Boltzmann statistics. Same as the above
description of the transverse momentum spectra, they
agree with the experimental data at low pT .

Both experimentally and theoretically, the study of the
particle spectra can contribute to our understanding of
the particle production and the evolution dynamics in
the collision system. The Tsallis statistics has attracted
extensive attention due to the investigation of final-state
particles produced in nuclear collisions at high energies.
Compared with Levy-Tsallis, Boltzmann, and Blast wave,
the Tsallis distribution can describe the transverse
momentum spectra at a large range. It can extract the
temperature and the nonequilibrium degree, which pro-
vide the requirements of the RAA calculation. It is suc-

cessful in explaining the experimental data of the
transverse momentum spectra and can obtain some ther-
modynamics information, such as the temperature and
the chemical potential. In our previous work [34–37],
the statistics model is only used to study the transverse
momentum spectra of particles produced in one or more
collision systems at different energies. The present work
is a new attempt. The model is improved by the Tsallis
statistics in relaxation time approximation. Considering
relaxation time approximation of the collision term, we
achieve the final-state distribution by solving the Boltz-
mann transport equation, where the initial distribution
is inserted consistently. And, the expression of the RAA
calculation in the Tsallis statistics is derived. In our pre-
vious work [31–34], the Tsallis distribution can describe
the pT distributions of particles produced in one or more
collision systems, such as p, Cu, Au, and Pb collisions at
various energies. Compared with these collision systems,
the Xe nucleus has a moderate prolate deformation. But,
pT distributions in Xe-Xe collisions can also be described
well by the Tsallis distribution. The improved model can
not only describe transverse momentum spectra but also
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Figure 2: Nuclear modification factor RAA as a function of pT in the Xe-Xe collision at
ffiffiffiffiffiffiffi
sNN

p = 5:44TeV. The filled circles indicate the
experimental data in 0-5%, 5-10%, 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70%, and 70-80% centrality classes [1]. The lines are the
results of equation (11) and the dotted lines are the results of the Boltzmann statistics.
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reproduce the nuclear modification factor of particles in
Xe-Xe collisions at

ffiffiffiffiffiffiffi
sNN

p = 5:44TeV in different centrality
classes.

Data Availability

The used data in the model calculation are available and have
been listed in Table 1.
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