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Abstract: Strategic management of crop residues is essential to enhance soil quality for sustainable
agriculture. However, little is known about the specific amounts of crop residues needed to improve
soil quality characteristics which are key to develop economic plans. In this study, we investigated the
effects of applying crop residue at five rates, including 100% (R100), 75% (R75), 50% (R50), 25% (R25),
and 0% (R0), on wheat yield and soil properties. Field experiments were conducted for two cropping
seasons in a wheat-corn rotation under conventional (CT) and no-till (NT) systems to observe the
first results obtained during short-term periods (one-year application). During the study, the wheat
and corn fields were irrigated. Application of plant residue resulted in increased soil organic carbon
(SOC) and available nutrients and improved soil physical properties, i.e., aggregates mean weight
diameter in wet (MWDw) and dry (MWDd) conditions, water-stable aggregates (WSA), dry-stable
aggregates, (DSA), soil water infiltration (SWI), soil available water (SAW), and yield of wheat and
corn. The effects were stronger at higher residue application rates. In the CT system, compared to R0,
R100 resulted in the highest increase equal to 38, 29, 23, 34, 35, 41, and 11% for SOC, MWDw, MWDd,
WSA, DSA, SAW, and wheat grain yield, respectively. This was equivalent to 28, 19.5, 19, 37, 44, 52,
and 6% for the NT system, respectively. Generally, the NT system resulted in a stratification of the
soil properties within 0–10 cm compared to 10–20 cm soil depth, but a uniform distribution for both
depths under CT system. Overall, these results show that crop residue application can improve soil
quality and yield in cereal production systems under semi-arid conditions during the first year of
application. It will be key to monitor these changes in along-term field studies.

Keywords: crop residue; conventional tillage; crop productivity; no-tillage; soil management

1. Introduction

The major challenges that humankind faces to date include food insecurity, wa-
ter scarcity, land degradation, energy shortages, and climate change due to increased
greenhouse gas emissions [1–3]. These challenges affect the sustainable use of natural
resources [4]. However, soils are in several cases mismanaged and deteriorated [5,6]. Pro-
viding food for the growing population and reducing environmental damage requires
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sustainable soil use [7]. Many studies have reported that retaining plant residue in soil
could lead to improved physical, chemical and biological properties, which provide better
conditions for plant root growth and sustainable crop production [8,9] and even protect
against soil erosion processes [10,11]. Plant residue refers to parts of the plant that remain
in the field after harvest [12]. Around 3.5–4 × 109 Mg of plant, residues are produced each
year globally, among which 75% come from cereals [13].

Worldwide, removal of crop residue from the field after crop harvest is the norm or
cultural heritage to conserve the plantation “clean” [5,6,10]. The removed residues are
generally used for food and fiber (animal feed and bedding, biofuel production, building
materials, household fuel, paper making, and mushroom cultivation), negatively affecting
soil fertility, agronomic productivity, and environmental quality [14]. In addition, in many
developing countries, conventional agricultural methods such as intensive tillage and the
burning of crop residue exacerbate these impacts [15]. Therefore, proper management
of crop residue is necessary for improving soil fertility and quality. Some researchers
suggested that 30 to 50% of crop residue could be removed from the farm without causing
any adverse impacts on soil [16]. Vasconcelos et al. [17] suggested 6 Mg ha−1 of crop
residue as an appropriate management practice to maintain proper soil cover and prevent
soil C loss. Kumari et al. [18] found that 100% retention of plant residue resulted in the
highest aggregate stability and water holding capacity. Increasing crop yield has also been
reported by retaining 100% to 150% of crop residues [19,20]. Furthermore, some researchers
have shown that the retention of a moderate amount (50%) of crop residues can increase
crop production [21,22]. Some studies have shown that the removal of approximately 50%
of residue has little effect on crop yield [23,24]. On the other hand, recent studies reported
adverse impacts of crop residue removal on soil quality and crop yield [25]. The amount
of crop residue that can be removed from agricultural land without having any negative
effects on soil quality and yield production is greatly site-specific and non-well studied to
date. It depends on the amount of residue, soil properties, soil fertility status, cropping
system, management duration, and differs by agricultural management practices, climate,
region, and should be evaluated on a smaller-scale basis [18,26–28]. Also, irrigation can
affect the potential of crop residue management on soil quality [29].

Each year a massive amount of crop residues are produced in Iran, but unfortunately,
these residues are mostly burned or removed for fodder, energy production or other
purposes. Also, in many areas, conventional agriculture practices, such as intensive tillage
and lack of proper crop rotation, are common. Furthermore, in many areas, soils with
low levels of organic matter and poor fertility respond fast to sustainable management
practices [30,31]. Therefore, plant residue management requires careful consideration
to determine the appropriate amount of crop residue to improve soil quality. To our
knowledge, no comprehensive studies have reported the effects of different rates of crop
residue retention on soil properties and crop yield simultaneously in Iran. Such information
is essential to gain more insights into sustainable management of crop residue. Therefore,
the main goals of this research are to (a) investigate the short term effect of applying
different rates of crop residue on soil physical and chemical properties in topsoil layers,
and (b) assess the short term impact on wheat and corn yield in a wheat-corn rotation
under conventional and no-till farming systems. Our research hypothesis was to test if
retaining higher crop residue rates in both conventional tillage (CT) and no-tillage (NT)
systems would improve soil quality and wheat yield, although their effect could be more
evident in the NT system, a priori. This study is conducted to assess these results at a
short-term period (1-year), considering if positive results are obtained, to recommend
this investigation for longer term-periods and larger scales. As a case study, we select a
representative agricultural region in the semi-arid region of Karaj, located in the Alborz
province, Iran.
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2. Materials and Methods
2.1. Site Characteristics and Experimental Design

The investigation was conducted at the Agriculture Research Station of the College
of Agriculture and Natural Resources, University of Tehran, Karaj, Iran (35◦48′32′′ N,
50◦58′06′′ E, 1308 elevation) in July of 2018. The site is characterized by a semiarid climate
with a mean air temperature and rainfall of 13.7 ◦C and 245.5 mm, respectively. Two field
sites with two management practices conventional tillage (CT) and no-tillage (NT) systems,
were selected for this study (Figure 1). Both fields were cultivated with wheat (Triticum
aestivum L.)-corn (Zea mays L.) rotation for fifteen years before the experiment. During these
years, in the CT system, post-harvest crop residue was removed from the farm for several
purposes, including food and bedding for animals, building materials and household fuel,
but in the NT system, crop residues remained on the farm.

Agronomy 2021, 11, x   3 of 26 
 

 

2. Materials and Methods 
2.1. Site Characteristics and Experimental Design 

The investigation was conducted at the Agriculture Research Station of the College 
of Agriculture and Natural Resources, University of Tehran, Karaj, Iran (35°48′32″ N, 
50°58′06″ E, 1308 elevation) in July of 2018. The site is characterized by a semiarid climate 
with a mean air temperature and rainfall of 13.7 °C and 245.5 mm, respectively. Two field 
sites with two management practices conventional tillage (CT) and no-tillage (NT) sys-
tems, were selected for this study (Figure 1). Both fields were cultivated with wheat (Trit-
icum aestivum L.)-corn (Zea mays L.) rotation for fifteen years before the experiment. Dur-
ing these years, in the CT system, post-harvest crop residue was removed from the farm 
for several purposes, including food and bedding for animals, building materials and 
household fuel, but in the NT system, crop residues remained on the farm. 

 
Figure 1. View of the experimental site. 

For each of the tillage management systems, the field size was 19 × 22 m. Each field 
was divided into 20 plots of 3 × 4 m. The experimental design was a split-plot with four 
replications for each treatment with a 2 m distance between replicates and 1 m distance 
between the plots. The physical-chemical properties of the soil before the start of the ex-
periment are given in Table 1. Soil textures were sandy loam and clay loam under CT and 
NT respectively. It could be because the study area has been alluvial plains since ancient 
times, which probably transportation and sedimentation process led to the formation of 
soils with different parent material and characteristics in this area. 

Table 1. Soil properties of 0–10 and 10–20 cm soil depths in the fields at the start of the experiment. 

Soil Properties 
Conventional Tillage (CT) No-Tillage (NT) 

0–10 cm 10–20 cm 0–10 cm 10–20 cm 
pH † 7.83 ± 0.11 7.78 ± 0.13 7.85 ± 0.07 7.6 ± 0.11 

EC (ds m−1) 0.91 ± 0.01 0.75 ± 0.25 1.06 ± 0.06 0.73 ± 0.16 
OC (mg/g) 0.92 ± 0.13 0.86 ± 0.16 1.25 ± 0.05 1.01 ± 0.11 
TN (mg/g) 0.09 ± 0.01 0.07 ± 0.01 0.11 ± 0.02 0.08 ± 0.01 

Avail. K (mg kg−1) 167 ± 4.46 134.23 ± 3.12 279.04 ± 5.19 237.42 ± 6.04 
Ava P (mg kg−1) 8.72 ± 0.20 9.54 ± 0.65 15.05 ± 1.42 15.34 ± 0.73 
Ava Fe (mg kg−1) 13 ± 0.50 13.94 ± 0.16 9.26 ± 0.89 8.51 ± 0.50 

Figure 1. View of the experimental site.

For each of the tillage management systems, the field size was 19 × 22 m. Each field
was divided into 20 plots of 3 × 4 m. The experimental design was a split-plot with four
replications for each treatment with a 2 m distance between replicates and 1 m distance
between the plots. The physical-chemical properties of the soil before the start of the
experiment are given in Table 1. Soil textures were sandy loam and clay loam under CT and
NT respectively. It could be because the study area has been alluvial plains since ancient
times, which probably transportation and sedimentation process led to the formation of
soils with different parent material and characteristics in this area.

2.2. Treatment Applications

Wheat residue treatments were applied in both NT and CT following wheat harvest
from the previous year. For this purpose, crop residue was removed from the fields and
partly chopped. Then five different rates of wheat residue, including 3.5 ton ha−1 (100%,
R100), 2.625 ton ha−1 (75%, R75), 1.75 ton ha−1 (50%, R50), 0.875 ton ha−1 (25%, R25), and
no-residue (0%, R0) were distributed uniformly on the surface of appropriate plot in CT and
NT. Corn was planted in July 2018 using a row crop planter with a 75 cm distance between
the rows and 10 cm within row distance between the plants. Each plot included a total
of six rows. In the NT field, seed placement was carried out using a planter with a single
coulter. In the CT, before seed placement, the soil was cultivated with a moldboard plow to
a depth of 35 cm, followed by disking and leveling. Basal NPK fertilizers were broadcasted
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in the form of 50 kg urea, 70 kg potassium sulfate, and 150 kg superphosphate per hectare.
Additional N was top-dressed at V8/(80 kg Urea ha−1) and V10 (270 kg Urea ha−1). The
fields were irrigated after planting and on a 7–10 d basis thereafter. Weeds were removed
manually at V4 and V8 stages.

Table 1. Soil properties of 0–10 and 10–20 cm soil depths in the fields at the start of the experiment.

Soil Properties
Conventional Tillage (CT) No-Tillage (NT)

0–10 cm 10–20 cm 0–10 cm 10–20 cm

pH † 7.83 ± 0.11 7.78 ± 0.13 7.85 ± 0.07 7.6 ± 0.11
EC (ds m−1) 0.91 ± 0.01 0.75 ± 0.25 1.06 ± 0.06 0.73 ± 0.16
OC (mg/g) 0.92 ± 0.13 0.86 ± 0.16 1.25 ± 0.05 1.01 ± 0.11
TN (mg/g) 0.09 ± 0.01 0.07 ± 0.01 0.11 ± 0.02 0.08 ± 0.01

Avail. K (mg kg−1) 167 ± 4.46 134.23 ± 3.12 279.04 ± 5.19 237.42 ± 6.04
Ava P (mg kg−1) 8.72 ± 0.20 9.54 ± 0.65 15.05 ± 1.42 15.34 ± 0.73
Ava Fe (mg kg−1) 13 ± 0.50 13.94 ± 0.16 9.26 ± 0.89 8.51 ± 0.50
Ava Zn (mg kg−1) 2.57 ± 0.51 2.64 ± 0.36 2.84 ± 0.26 1.75 ± 0.21
Ava Cu (mg kg−1) 1 ± 0.19 1.32 ± 0.06 1.65 ± 0.14 1.53 ± 0.16
Ava Mn (mg kg−1) 12.4 ± 0.64 11.68 ± 0.96 16.25 ± 0.70 15 ± 1.27

Bulk density (mg m−3) 1.21 ± 0.04 1.27 ± 0.08 1.38 ± 0.01 1.45 ± 0.08
Total Porosity (%) 54.7 ± 2.16 52.07 ± 1.06 47.92 ± 1.86 45.28 ± 0.91

Sand (%) 56.9 ± 1.33 52.5 ± 0.79 27.9 ± 0.35 27.3 ± 0.72
Silt (%) 24.4 ± 1.46 28.08 ± 1.35 42.09 ± 0.18 41.64 ± 0.60

Clay (%) 18.6 ± 1.27 19.42 ± 2.10 30 ± 0.35 31.03 ± 0.72
Soil texture Sandy Loam Sandy Loam Clay Loam Clay Loam

† Value ± standard deviation, n = 3. EC, Electrical conductivity; OC, Organic carbon; TN, Total nitrogen;
Ava, Available.

After corn harvest in October 2018, five different rates of corn residue, including
6 ton ha−1 (100%, R100), 4.5 ton ha−1 (75%, R75), 3 ton ha−1 (50%, R50), 1.5 ton ha−1

(25%, R25), and no-residue (0%, R0) were applied in the same plots under NT and CT
systems. Winter wheat (Triticum aestivum L.) was planted in November 2018. For this
purpose, 208 (kg ha−1) of wheat seed were planted using a drilling machine with a 13.5 cm
distance between the rows (MZK3-21-21, Machine Barzegar Company, Hamedan, Iran).
Basal fertilization included 50 kg urea, 200 kg superphosphate, and 150 kg potassium
sulfate. Additional N was applied at late tillering (110 kg urea ha−1), stem elongation
(110 kg urea ha−1), and spiking (50 kg urea ha−1). The plots were irrigated after planting
and based on environmental conditions thereafter.

2.3. Plant Residue Analyses

The wheat and corn residue were collected after harvesting dried and finely ground for
analyses. Organic carbon (OC) was determined using the Walkley and Black method [32].
Total nitrogen (TN) in plant residue was determined using the Kjeldahl method [33].
The P and K concentrations in the samples were measured on dry-ashed samples using
spectrophotometric and flame photometric methods, respectively [33]. Atomic absorption
spectrophotometry was used to determine Cu, Fe, Mn, and Zn in plant residue [33].
(Table 2).
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Table 2. Elemental composition of plant residue.

Plant Residue
N P K C C/N Fe Mn Cu Zn

% - mg kg−1 Dry Matter

Wheat † 0.84 ± 0.12 0.09 ± 0.01 1.75 ± 0.07 55.4 ± 1.80 66 ± 2.56 119 ± 2.87 27 ± 1.63 17 ± 1.63 32 ± 2.16

Corn 0.92 ± 0.06 0.25 ± 0.02 1.08 ± 0.01 53.65 ± 1.30 58 ± 1.63 144.59 ± 4.30 33.64 ± 2.49 14.52 ± 0.88 26.12 ± 1.67
† Value ± standard deviation (SD), n = 3.
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2.4. Soil Sampling and Analysis

After wheat harvesting, soil samples were collected using an auger sampler from
0–10 cm and 10–20 cm depths of each plot. Soil samples were collected from three plot
spots and, subsequently, uniformly mixed to make one composite sample per soil depth.
Soil samples were air-dried, sieved (2 mm) and stored until analyses were carried out.
Soil organic carbon (SOC) was determined using Walkley and Black [32] method, pH and
electrical conductivity (EC) were measured in saturated soil extracts. Available phosphorus
was determined using the NaHCO3 method [34]. The ammonium acetate method was
used for determining available potassium [35]. Total nitrogen (TN) was measured using
the method described by Bremner and Mulvaney [36]. Micronutrients were measured in
DTPA extracts [37] using atomic absorption spectrophotometry.

2.5. Soil Organic Carbon (SOC) and Total Nitrogen (TN) Stocks

The soil organic carbon and total nitrogen stock (Mg ha−1) were calculated for 0–10 cm
and 10–20 cm soil depths using the concentration and soil bulk density at each soil
depth [38,39]. Values of soil bulk density differed at soil depths (Table 1).

2.6. Stratification Soil Properties

Stratification ratio (SR) for a soil property is defined as the ratio of its value at the soil
surface to that at a lower depth and it is used as an indicator of dynamic soil quality [40].
In this research, stratification ratios (SR) of the measured soil properties were calculated
by dividing the mentioned parameters content of the 0–10 cm soil depth into those of
10–20 cm [39,40].

2.7. Soil Physical Analysis
2.7.1. Aggregate Stability Indexes Determination

The separation of aggregate-size was conducted by the wet and dry method [41]. For
wet sieving, 50-g air-dried (8 mm sieved) soil sample was put on the top of a 4-mm sieve
and submerged for 5 min in deionized water at room temperature to allow slaking [42].
Sieving was performed by moving the sieves up and down 3 cm, 50 times in 2 min to
achieve aggregate separation [43]. A series of six sieves (4, 2, 1, 0.5, 0.25 and 0.125 mm) was
used for this purpose. A shaker and the dry-sieving methods were used to determine the
secondary particle size distribution of the soils in dry condition [42]. Briefly, 50 g of air-dried
(8 mm sieved) soil sample was put on sieve series and then shaken for 5 min. The selected
sieve sizes were 4, 2, 1, 0.5, 0.25 and 0.125 mm. Additional indexes, including aggregates
mean weight diameter in wet (MWDw) and dry condition (MWDd) conditions [42], as
well as dry-stable aggregates larger than 0.25 mm (DSA > 0.25 mm in %) and water-stable
aggregates (WSA > 0.25 mm in %), were measured [44,45]:

MWD = ∑n
i=1 XiWi (1)

DSA > 0.25 mm =
M 0.25

Mt
× 100 (2)

WSA > 0.25 mm =
M 0.25

Mt
× 100 (3)

where Xi is the arithmetic mean diameter of each aggregate size fraction (mm), Wi is the
proportion of aggregates in the corresponding size fraction, M 0.25 is the sum of aggregates
mass (g) within all size classes coarser than 0.25 mm, and Mt is the total mass of soil sample
(g) was used for sieving.

2.7.2. Soil Infiltration and Available Water

Following the wheat harvesting, infiltration rates were measured at three points per
plot, using the double ring method [46], included two cylinders with a height of 35 cm
and inner-ring diameters of 50 and 35 cm, respectively. The double-ring infiltrometer was
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tamped 5 cm into the soil. Changes in water height were recorded for the first ten minutes
at intervals of one minute and up to 60 min every five minutes. The moisture contents of
soil samples at field capacity and wilting point were determined using the pressure plate
and pressure membrane apparatuses. Plant available water (Aw) was calculated from the
difference of moisture content of field capacity and wilting point [47].

2.8. Yield Measurement

Corn and wheat were harvested in October 2018 and July 2019, respectively. After
excluding the plot margins, a 1 × 1 m quadrat was used to harvest three locations within
each plot. To calculate total biomass for wheat, the whole plants were harvested and
numbered and weighted for each plot separately, and their mean was calculated as total
biomass yield per m2 and finally scaled up to a one-hectare basis. The harvested plants
were manually threshed, and separated grain and straw were measured. For determination
of corn yield, fresh weights of the harvested plants were recorded. Plant subsamples were
dried at 60 ◦C for 48 h and dry matter yield was estimated [48,49].

2.9. Statistical Analyses

The data were statistically analyzed using general linear models (GLM) procedure,
using SAS 9.4 software (SAS Institute Inc., Cary, NC, USA). Means were compared by the
Duncan method at the 0.05 probability level.

3. Results and Discussion
3.1. Weather Conditions

In general, during the experiment, the mean air temperature was high in summer
2018 (Figure 2a). By the beginning of the fall season, it started falling trend and reached
its lowest values in winter 2019, and then followed the raising trend raised until summer
2019.The highest (32 ◦C) and lowest (4.5 ◦C) mean air temperature was recorded in July
2018 and January 2019, respectively. Also during this period, the main rainfall events
were observed from October 2018 to May 2019, with November, January and March being
the rainiest months. The highest rainfall (71 mm) was recorded in March 2019. In the
summer of 2018 and 2019, the rainfall was almost zero. The long-term data (2005–2017)
of monthly rainfall and mean air temperature is presented in Figure 2b. As the results
show, the long-term trend of mean air temperature is similar to the air temperature trend
during the study period (2018–2019). Monthly long-term rainfalls in summer and spring
are approximately the same as those in 2018 and 2019, while in fall and winter (except
in February), these amounts are substantially lower compared to those during the study
period. However, during the experiment irrigation was used, which demonstrates that our
studied period is a representative period of our experimental monitoring time.

3.2. Soil Chemical Properties
3.2.1. Soil pH and EC

In the CT system, residue increased soil pH, with the highest pH value (8.08) under
R100 and the lowest under R0 (7.94). The only significant difference (p < 0.05) was observed
between R100 and both R0 and R25 (Figure 3a). Residue application had no impact on soil
electrical conductivity (EC) under this system (Figure 3b). In the NT system, no significant
difference was observed among residue treatments on soil pH and EC (Figure 3a,b). Both
parameters were significantly (p < 0.05) higher in 0–10 cm, compared to 10–20 cm under
this system, while in the CT system, only soil EC was significantly (p < 0.05) higher at
the 0–10 cm compared with 10–20 cm (Figure 4). Also, the interaction effects of residue
rate and tillage system had a significant effect (p < 0.05) on soil pH, where CTR100 and
NTR100 resulted in the highest (8.08) and lowest (7.7) amounts among the treatments
respectively (Table 3). However, the interaction effects did not significantly impact EC.
Hargrove et al. [50] and Blevins et al. [51] also reported higher soil pH under CT compared
to NT in Kentucky. However, Edwards et al. [52] found no difference in soil pH between
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NT and CT. Differences between soil pH under tillage systems may be attributed to the
buffering capacity of different soil types. In the NT system, soil texture is clay loam with a
higher buffering capacity than the soil under the CT system (sandy loam) and it prevents
drastic changes in soil pH [53]. Furthermore, nutrient movement in the soil, crop residue
decomposition rate, and infiltration capacity could have contributed to the variation in
data observed.

Soil pH increase after the addition of crop residue has also been observed in other
studies [54], probably due to decarboxylation of organic anions and release of OH− or high
concentrations of basic cations such as Ca, Mg, and K, released during the decomposition
of plant residue [55,56]. In this study, the highest pH measured in R100 treatment represents
the higher potential contribution of larger residue rates to release excess alkaline cations
and create a liming effect compared to lower residue rates. However, the results of this
study are not in line with those who reported decreased soil pH under residue retention
due to acidifying processes during the mineralization of crop residue, nitrification of
applied N fertilizer, root exudation, and also the increased number of electrolytes under
NT system [8,57–59].
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Table 3. The interaction effect of residue rates and tillage system on soil chemical properties.

Tillage Residue Rate pH EC OC TN C:N P K

CT

R100 † 8.08 ± 09 a 0.98 ± 0.08 abc 1.17 ± 06 cd 0.13± 0.01 ab 9.14 ± 1.41 b 12.99 ± 0.83 e 238.7± 8.79 6 e
R75 8.00 ± 0.09 ab 0.97 ± 0.13 abc 1.11 ± 0.05 de 0.12 ± 0.01 ab 8.83 ± 0.56 b 11.32 ± 0.76 f 224.37 ± 19.16 ef
R50 8.01 ± 0.03 ab 0.88 ± 0.26 bc 1.07 ± 0.07 ef 0.13 ± 0.01 a 8.08 ± 1.43 b 10.93 ± 0.82 fg 213.44 ± 17.66 f
R25 7.98 ± 0.08 ab 0.84 ± 0.16 c 1.02 ± 0.06 f 0.11 ± 0.01 cde 9.29 ± 1.22 b 10.10 ± 0.53 fg 179.70 ± 11 g
R0 7.94 ± 0.06 ab 1.04 ± 0.13 a 0.84 ± 0.06 g 0.09 ± 0.00 e 8.52 ± 0.86 b 9.72 ± 0.47 g 161.76 ± 19.86 h

NT

R100 7.70 ± 0.07 c 1.10 ± 0.05 a 1.41 ± 0.16 a 0.12 ± 0.03 bc 12.27 ± 2.19 a 25.08 ± 3.86 a 373.28 ± 62.81 bc
R75 7.73 ± 0.12 c 1.05 ± 0.05 a 1.35 ± 0.15 ab 0.11 ± 0.03 c 11.92 ± 1.86 a 23.47 ± 2.71 b 396.34 ± 60.43 a
R50 7.72 ± 0.05 c 1.01 ± 0.04 ab 1.32 ± 0.14 b 0.11 ± 0.03 bcd 12.13 ± 2.69 a 20.59 ± 4.63 c 382.70 ± 55.07 ab
R25 7.74 ± 0.09 c 1.01 ± 0.03 ab 1.23 ± 0.1 c 0.10 ± 0.02 de 12.28 ± 1.93 a 20.50 ± 3.24 c 364.6 ± 23.1 c
R0 7.73 ± 0.11 c 1.01 ± 0.09 ab 1.09 ± 0.06 e 0.09 ± 0.01 e 11.35 ± 1.26 a 17.91 ± 1.77 d 296.89 ± 35.29 d

† Mean ± standard deviation, n = 4. Means with the same letter in each column are not significantly different.
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In general, changes in soil pH are controlled by many factors, including the chemical
composition of residue, biological activity, soil organic matter content, and texture [56]. The
high soil pH and EC values at 0–10 cm depth in the no-tillage system indicate the high plant
residue on the soil surface and lack of soil disturbance, leading to release and accumulation
of nutrients on the soil surface and consequently increasing soil pH and EC. The increase
in soil EC at shallow depth may be attributed to the increased evapotranspiration, which
leads to the accumulation of solutes on the soil surface in the CT system.

3.2.2. Soil Organic Carbon (SOC) and C:N Ratio

SOC content increased significantly with increasing residue rates compared to no
residue under CT and NT systems, with the highest amount recorded in R100 (Figure 3c).
NT with full retention of crop residue (NTR100) resulted in the highest amount (1.41%)
of SOC among management practices (Table 3). The lowest amount (0.84%) of SOC was
measured under CT system with no residue (CTR0). In addition, SOC concentration was
significantly (p < 0.05) higher in the 0–10 cm than 10–20 cm soil depth under the no-tillage
system, while in the CT system, the differences between the two depths were not significant
(Figure 4c). The effect of treatment on C: N ratio was not significant. Short term increases
in SOC under NT with residue application than CT system has been previously reported
by several researchers [60–65], which were attributed to the less soil disturbance low
oxidation of organic matter (crop residues), and higher aggregates stability compared to CT
system [60–62]. In addition, in the current research, differences in soil texture under tillage
systems could be accounted for the variation in SOC. Increasing soil clay concentration
under NT system protects soil organic matter pools from rapid decomposition and increase
the rate of accumulation of SOC [65].

The significant increase in SOC concentration with residue retention is attributed to
increased residue-derived SOC [66]. The SOC results in both CT and NT systems indicated
that even the maintenance of small amounts of crop residue can significantly increase soil
SOC related to residue rates. Soil carbon and organic matter are greatly affected by the
amount of plant residue returned to the soil [67]. The results of this study are in line with the
findings of those reported by several studies in short terms and long terms [18,57–59,68,69].
Higher SOC concentration in the 0–10 cm than 10–20 cm soil depth under no-tillage in this
study explains that crop residue remains mostly at the soil surface in the no-tillage system,
reflecting stratification of organic matter. In previous studies [58,70,71], the higher SOC in
the soil surface compared to lower depth mainly were attributed to the less contact of crop
residue with soil and lower decomposition rates.

3.2.3. Total Nitrogen (TN), Available K (Ava K), and Available P (Ava P)

Crop residue applied at R100, R75, R50 and R25 enhanced NPK under CT and NT
systems compared to R0 (Figure 3d–f). The results also showed that the amounts of
these nutrients were significantly higher (p < 0.05) at a depth of 0–10 cm compared to
10–20 cm under NT system (Figure 4d–f). The interaction effects of residue rate and tillage
system had an only significant effect on available K and P, but not on TN. NTR100 and
CTR0 led to the highest and lowest amount of the Ava K and Ava P respectively (Table 3).
Neugschwandtner et al. [72] also reported retention of P and K under NT system. In
this research, the high level of Available K and P in the NT system could be attributed to
increased SOC as well as to finer soil texture compared to CT system which minimises
downward movement of nutrients.

These results are in line with those reported by [8,54,65,73] indicating more total N,
available P and K with residue retention compared to residue removal. Crop residue
is an important source of nutrients, and its recycling can release nutrients and increase
soil fertility, reducing dependency on chemical fertilizers [9]. Overall, in the CT system,
a significant increase in soil macronutrients was achieved by retaining 50% and higher
values of residue in the soil. In the CT system, it seems that due to soil disturbance by
the plow and higher oxidation and decomposition, the retention of 25% of the residue
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could not make a significant contribution to increasing macronutrients, therefore larger
amounts of residue needed to improve the nutrient status in this system. Whereas, in the
NT system, even retaining the lower amount of residue (25%) was enough to increase
the soil macronutrients significantly, reflecting better decomposition circumstances under
the NT system. On the other hand, the concentration of these three nutrients decreased
with soil depth in the NT system. The stratification of nutrients was previously reported
under no-tillage practices [63,64,72]. Crop residue enriches the soil with nutrients through
mineralization of nutrients, reduces the stabilization of nutrients and minimizes nutrient
loss through runoff and soil erosion [8,74]. Nutrient release from residue retention mainly
depends on the amount of residue retained, soil properties, climate, mineralization rate,
quality of residue, fertilizer application, and site characteristics.

3.2.4. Micronutrients (Fe, Mn, Cu, Zn)

Residue addition increased micronutrients for both CT and NT systems. Applying
higher residue rates resulted in higher concentrations of nutrients, with the highest values
obtained from R100 (Figure 5). Augmentation of micronutrients with plant residue addition
might be due to the chelating of organic materials that are released due to the decomposition
of crop residue and contribute to micronutrients’ availability by preventing processes
like leaching, oxidation, and fixation [9,75]. Among the micronutrients, only Mn was
significantly (p < 0.05) influenced by the interaction effects of residue rates and tillage
system (Table 4), where NTR100 resulted in the highest amount (21.8 mg kg−1) of Mn.
Higher Mn content under NT has also been reported by other scholars [51,52]. Also, in the
NT system, the values of micronutrients appeared to be significantly greater in 0–10 cm
compared to 10–20 cm soil depth (Figure 6). The increased organic matter in the surface
layers could be account for these results. Richards et al. [76] reported that soil organic
matter increases micronutrients solubility and availability for plant uptake by forming
chelates. These researchers suggested using organic amendments as an ideal source for
areas with microelements deficit. Micronutrient deficiency is reported to decrease crop
productivity [77]. Therefore, the application of crop residue is recognized as an effective
strategy for enhancing soil micronutrients [9].
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Table 4. The interaction effect of residue rates and tillage system on soil micronutrients.

Tillage Residue Rate Fe Mn Cu Zn

CT

R100 † 16.77 ± 3.08 a 15.57 ± 1.4 de 1.82 ± 0.13 a 4.02 ± 0.5 a
R75 15.40 ± 1.62 ab 13.90 ± 0.92 f 1.61 ± 0.14 bc 3.00 ± 0.34 bc
R50 14.30 ± 1.93 bc 12.98 ± 1.19 fg 1.55 ± 0.1 bc 3.54 ± 0.43 ab
R25 13.72 ± 1.76 c 11.81 ± 1.16 gh 1.46 ± 0.11 cd 3.28 ± 0.64 b
R0 13.17 ± 1.45 c 10.85 ± 0.87 h 1.30 ± 0.16 d 2.48 ± 0.37 cd

NT

R100 8.24 ± 0.63 d 21.83 ± 1.67 a 1.90 ± 0.21 a 4.06 ± 1.11 a
R75 8.02 ± 0.7 d 19.81 ± 2.25 b 1.84 ± 0.21 a 3.65 ± 1.04 ab
R50 7.57 ± 0.46 d 17.67 ± 2.56 c 1.82 ± 0.2 a 2.57 ± 0.6 cd
R25 7.42 ± 0.52 d 16.29 ± 2.46 cd 1.65 ± 0.1 b 2.50 ± 0.59 cd
R0 7.35 ± 0.74 d 14.2 ± 1.76 ef 1.48 ± 0.1 c 2.22 ± 0.65 d

† Mean ± standard deviation, n = 4. Means with the same letter in each column are not significantly different.
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3.2.5. Soil Organic Carbon (SOC) and Total Nitrogen (TN) Stocks at 0–10 and 10–20 cm
Soil Depths

The SOC stock at the 0–10 cm (19 Mg ha−1) was significantly higher (p < 0.05) than
that to 10–20 cm (17 Mg ha−1) soil depth under NT system (Figure 7a). Whereas, under
the CT system no significant differences were observed for SOC stock between two depths.
Also, TN stock was significantly higher at the 0–10 cm (1.8 Mg ha−1) compared to that of
10–20 cm (1.3 Mg ha−1) under NT system (Figure 7b). By contrast, TN stocks were not
significantly different between the two soil depths under CT system. Previous findings
show that SOC and TN stocks are usually higher at the soil surface under conservative
tillage than under conventional tillage [44,78,79], which is attributed to the less soil distur-
bance and mechanical operations, increased physical protection of soil organic matter by
lower degradation of soil aggregates, and also lower microbial decomposition relative to
conventional tillage. In addition, increasing crop biomass and retaining more residue under
NT are accounted for higher SOC and TN stocks [39]. Furthermore, the fine-textured (clay
loam) soil in the NT system in the current research, could also explain higher SOC and TN
stocks. Clay-rich soils collect SOC more rapidly than sandy soils. It is assumed that at least
two separate mechanisms protect the SOC by clay particles. First, chemical stabilization
and adsorption of SOC onto negatively charged clay minerals with high surface area,
and secondly by physically protection of SOC from microbial decomposition through the
formation of soil aggregates [80]. Also, clay particles reduce N mineralization through the



Agronomy 2021, 11, 302 15 of 26

physical protection of organic N and chemical stabilization of humic substances which
have high concentrations of organic N [80,81].
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3.3. Soil Physical Properties
3.3.1. Aggregates Mean Weight Diameter in Wet (MWDw) and Dry Condition
(MWDd) Conditions

Medium (R50) and higher rates of residue could enhance MWDW and MWDd signifi-
cantly (p < 0.05) compared to residue removal (R0), while lower residue rates (R25) had no
significant effect (Tables 5 and 6). MWDw was not significantly affected by residue rate and
soil tillage interactions effects, but MWDd was significantly (p < 0.05) affected by this effect.
The highest (1.74 mm) and the lowest (1.36) values of MWDd were measured in NTR100
and CTR0 respectively (Table 7). Higher values of aggregates mean weight diameter under
NT and higher residue retention treatments have also been reported previously in short
term and long term studies [82–86]. Reduced MWD in the CT system is mainly due to the
breakdown of soil aggregates by the plow, and physical disturbance of soil structure [82].
Furthermore, in the current study, coarse soil texture (sandy loam) under CT, create a suit-
able condition for rapid soil organic matter decomposition and reduce aggregate resistance
against destructive forces [86,87]. The increase of MWD under NT system could be related
to clay texture as well as less mechanical disturbance and decomposition of crop residue
which caused greater biological activity and consequently led to the creation of larger
stable aggregates.

MWDW and MWDd were significantly (p < 0.05) larger at 0–10 cm than that of
10–20 cm under the NT system (Table 6). Sithole et al. [71] also found a significantly
higher MWD in the 0–10 cm under NT system. Similar to our findings, the other studies
have shown that inputs of crop residue increase MWD [70,88]. The increase in MWDw
and MWDd indices in the residue treatments compared to the residue removal can mainly
be attributed to the increase in organic carbon in these treatments, which had a positive
linear relationship with SOC (Figures S1 and S2). In a various research, it has been reported
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that organic carbon as a binding agent improves larger aggregate formation and leads to
increased MWD [89,90]. The stability of soil aggregates has a positive relationship with
the amount of soil organic matter added to the soil [91]. Whereas the removal of plant
residue causes structural degradation and reduces the stability of soil aggregates [8,92].
The addition of crop residue performs several positive functions for soil structural improve-
ment and aggregate stability. The presence of crop residue reduces the force of raindrops
and moderates the destructive effects of repeated soil freezing and thawing, which help
to stabilize the soil aggregates [93]. It also stimulates soil microbial activity and releases
organic compounds that play a positive role in the binding of soil particles to each other
and increasing aggregate stability [8].

Table 5. The effect of residue rates, soil depth and their interaction on soil physical properties in the CT system.

Treatments MWDw WSA MWDd DSA Aw

Residue rate

R100 † 1.55 ± 0.11 a 62.56 ± 3.66 a 1.67 ± 0.15 a 60.94 ± 4.12 a 20.95 ± 0.97 a
R75 1.55 ± 0.13 a 55.91 ± 3.99 b 1.58 ± 0.12 a 56.54 ± 3.87 b 19.27 ± 1.10 b
R50 1.37 ± 0.11 b 55.06 ± 6.12 b 1.64 ± 0.10 a 60.56 ± 3.48 a 18.27 ± 1.30 b
R25 1.26 ± 0.09 c 47.48 ± 5.32 c 1.43 ± 0.04 b 51.00 ± 2.11 c 16.97 ± 1.61 c
R0 1.20 ± 0.08 c 46.61 ± 5.63 c 1.36 ± 0.08 b 45.20 ± 4.07 d 14.87 ± 1.63 d

Soil depth 0 – 10 1.39 ± 0.20 a 56.42 ± 5.6 a 1.59 ± 0.17 a 55.25 ± 7.74 a 18.33 ± 2.25 a
10 – 20 1.38 ± 0.16 a 50.63 ± 8.43 b 1.48 ± 0.13 b 54.44 ± 6.30 a 17.80 ± 2.67 a

† Mean ± standard deviation, n = 4. Means with the same letter in each column are not significantly different. Abbreviations: MWDw,
Mean weight diameter of soil aggregates in wet condition; WSA, Water-stable aggregates; MWDd, Mean weight diameter of soil aggregates
in dry condition; DSA, Dry-stable aggregates; Aw, Available water.

Table 6. The effect of residue rates, soil depth and their interaction on soil physical properties in the no-tillage (NT) system.

Treatments MWDw WSA MWDd DSA Aw

Residue rate

R100 † 1.59 ± 0.21 a 66.17 ± 13.3 a 1.75 ± 0.33 a 73.41 ± 10.43 a 26.96 ± 2.69 a
R75 1.52 ± 0.18 ab 64.72 ± 13.47 a 1.73 ± 0.11 a 72.29 ± 8.62 a 24.29 ± 1.30 b
R50 1.53 ± 0.13 ab 60.85 ± 10.34 a 1.67 ± 0.13 a 67.52 ± 7.57 ab 22.37 ± 0.82 c
R25 1.45 ± 0.18 bc 54.72 ± 6.26 b 1.58 ± 0.10 ab 61.48 ± 5.15 b 20.72 ± 1.64 d
R0 1.33 ± 0.13 c 48.34 ± 5.36 c 1.47 ± 0.09 b 51.01 ± 5.40 c 17.73 ± 2.27 e

Soil depth 0 – 10 1.61 ± 0.15 a 67.03 ± 11.47 a 1.72 ± 0.17 a 69.01 ± 12.3 a 22.93 ± 3.72 a
10 – 20 1.36 ± 0.12 b 50.89 ± 4.63 b 1.56 ± 0.19 b 61.28 ± 8.29 b 21.90 ± 3.55 b

† Mean ± standard deviation, n = 4. Means with the same letter in each column are not significantly different. Abbreviations: MWDw,
Mean weight diameter of soil aggregates in wet condition; WSA, Water-stable aggregates; MWDd, Mean weight diameter of soil aggregates
in dry condition; DSA, Dry-stable aggregates; Aw, Available water.

Table 7. The interaction effect of residue rates and tillage system on soil physical properties.

Tillage Residue Rate MWDw WSA MWDd DSA Aw

CT R100 † 1.55 ± 0.1 ab 62.564 ± 3.42 bc 1.67 ± 0.14 ab 60.93 ± 3.86 cd 20.95 ± 0.9 cd
R75 1.54 ± 0.11 ab 55.91 ± 3.73 d 1.57 ± 0.11 bc 56.53 ± 3.62 d 19.27 ± 1.03 de
R50 1.36 ± 0.1 cd 55.06 ± 5.72 d 1.64 ± 0.09 ab 60.56 ± 3.25 cd 18.27 ± 1.21 ef
R25 1.26 ± 0.08 de 47.48 ± 4.97 e 1.42 ± 0.03 d 50.99 ± 1.97 e 16.96 ± 1.5 f
R0 1.12 ± 0.07 e 46.61 ± 5.26 e 1.36 ± 0.07 d 45.19 ± 3.8 f 14.86 ± 1.52 g

NT R100 1.59 ± 0.19 a 66.17 ± 12.56 a 1.74 ± 0.3 a 73.41 ± 9.76 a 26.95 ± 2.51 a
R75 1.52 ± 0.16 ab 64.71 ± 12.59 ab 1.72 ± 0.1 a 72.28 ± 8.06 ab 24.29 ± 1.22 b
R50 1.52 ± 0.11 ab 60.85 ± 9.67 c 1.67 ± 0.12 ab 67.51 ± 7.08 b 22.36 ± 0.76 bc
R25 1.44 ± 0.17 bc 54.71 ± 5.85 d 1.58 ± 0.08 bc 61.47 ± 4.82 c 20.71 ± 1.53 cd
R0 1.32 ± 0.12 cd 48.34 ± 5.01 e 1.46 ± 0.08 cd 51.01 ± 5.05 e 17.72 ± 2.11 ef

† Mean ± standard deviation, n = 4. Means with the same letter in each column are not significantly different.
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3.3.2. Water-Stable Aggregates (WSA) and Dry-Stable Aggregates (DSA)

In CT and NT systems, WSA and DSA indexes responded positively to residue
addition compared to no residue treatment (R0) (Tables 5 and 6). Also, a significant increase
(p < 0.05) in WSA and DSA indexes was observed at 0–10 cm compared to 10–20 cm under
the NT system (Table 6), but the interaction effects of residue rate and tillage system were
not significant for both parameters. Aggregate stability is one of the most sensitive soil
properties to the removal of plant residue, which decreases with the reduction of plant
residue. The main reason for increased WSA and DSA indexes in residue treatments can
be attributed to the increased organic matter in these treatments. Organic carbon from the
decomposition of plant residue acts as a cementing agent that leads to the aggregation of
primary soil particles and the formation of stable aggregates. WSA and DSA positively
correlated with soil organic carbon under CT and NT systems, (Figures S1 and S2). A
positive correlation between aggregate stability and soil organic matter content has also
been reported previously [91]. Removal of crop residue from cropland weakened soil
aggregates by limiting the number of binder compounds produced for aggregation as
well as further susceptibility of soil aggregates to disruption by raindrop impacts [8,68,82].
Many studies have reported significant reductions in aggregate stability with increased
crop residue removal [92,94].

On the one hand, crop residue application results in the intensification of microbial
activity as a major factor in aggregation processes and the formation of coarse aggre-
gates [95,96]. On the other hand, the addition of crop residue leads to an increase in soil
organic matter and the formation of stable aggregates, thereby reducing their decay [8].
In addition, the existence of crop residue modulates the temperature and humidity fluc-
tuations in the soil surface and prevents the loss of soil organic matter and destruction of
aggregates [97]. The reason for the increase in WSA and DSA indexes at a depth of 0–10 cm
compared to a depth of 10–20 cm is probably due to the increase in biomass from residue to
the soil as a result of more activity of soil organisms, which causes the formation of coarse
aggregates, especially in the surface layer, which is similar to the findings of [89].

3.3.3. Available Water

Residue treatments, including R25 to R100, resulted in a significant (p < 0.05) increase
in available water compared to the R0 (Tables 5 and 6). Soil available water was also
significantly (p < 0.05) influenced by interactions effects of residue rate and tillage system
(Table 7). The highest value (27%) of this parameter was recorded in NT with full retention
of crop residue (NTR100), while the lowest (~15%) values were observed under CT without
residue application (CTR0). The present results are in agreement with the findings of the
others [70,98]. In the NT, soil layer of 0–10 cm had significantly higher available water
content than that of 10–20 cm, whereas, in CT, the differences between two depths were
not significant (Tables 5 and 6). Application of residues in the NT system reduced runoff
and evaporation. In addition, the fine soil texture prevents rapid moisture loss, while in
the CT system, mixing of crop residue by tillage well as coarse soil texture caused faster
decomposition and reduce positive effects of crop residue on moisture retention [70,99,100].
In addition, probably in the sandy loam soil under CT system, more water from deep layer
moving up to surface via capillar and evaporate which resulted in lower water retention in
this system.

Crop residue improved soil water content by (1) improving soil infiltration rate, (2)
preventing water loss by evaporation and reducing soil temperature fluctuations, and (3)
increasing SOM concentration, which increases water holding capacity of the soil [17].
Also, increasing the amount of available water as a result of adding more residue can be
attributed to improving soil structure and aggregate stability. Moreover, creating favorable
conditions for soil microbial growth and activity, which can increase the number of small
and large soil pores as well as better infiltration of water [95] could be another reason [100].
The positive correlation between soil available water versus SOC concentration in both CT
and NT systems implies that an increase in SOC levels, via an increasing the plant residue
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rates, resulted in greater soil available water (Figures S1 and S2). Avoiding mechanical
soil disturbance, more accumulation of organic matter, maintaining a permanent soil cover
by crop residue, and abundance of stable aggregates indicates the greater available water
content at a depth of 0–10 cm compared to 10–20 cm in the no-till system. Higher soil water
content in surface layers of NT, due to crop residue mulch was also observed by [101].

3.4. Stratification Ratio (SR) of Soil Properties

The values of SR were greater in NT than CT and in most cases, significant increases
(p < 0.05) were observed in NT compared to CT system (Figure 8). These results are similar
to those previously found by the other authors [40,72,102,103]. The increased SR under NT
system is the result of an accumulation of crop residue and SOC on the soil surface and
thus improvement of soil quality at the soil surface [39,104–106]. Lower values of SR in CT
system is probably due to incorporating of crop residue with plow which homogenized
the crop residue distribution with soil depth and slightly stratified it.
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3.5. Soil Infiltration Rate

The results showed that increasing crop residue enhanced the final soil infiltration in
the CT system, but no significant differences were noticed among the residue treatments
(Figure 9). In the NT system, R50 and higher rates significantly (p < 0.05)) increased final
soil infiltration compared to R0. The interaction effects of crop residue and soil tillage had
no significant effect on soil final infiltration (Figure 10). The highest value of final soil
infiltration (13 mm hr−1) was recorded in R100 (Figure 9). Higher SOC content, greater sta-
bility of soil aggregates, improved soil porosity, which plays significant roles in increasing
soil physical and hydrological properties, are the reasons for higher soil infiltration under
residue treatments [99]. According to our results, Johnson et al. [107] reported that soil
infiltration was two times higher under the full return of residue (>7 Mg ha–1) than under
less return of residue (<2 Mg ha–1). Also, Chalise et al. [69] found a 66% increase in soil in-
filtration under residue retention compared to no residue in a no-till corn-soybean rotation.
Besides, Blanco-Canqui et al. [25] in Ohio found four-times lower soil infiltration with none
residue (0%) than 100% residue. These reductions were attributed to soil surface sealing or
crusting, consolidation caused by raindrops impacting the unmulched soil surface, and
lower surface-connected earthworm burrows [25].



Agronomy 2021, 11, 302 19 of 26

Agronomy 2021, 11, x   17 of 26 
 

 

 
Figure 8. Stratification ratios (SR) of studied soil properties under conventional tillage (CT) and 
no‒tillage (NT) system. Means with the same letter are not significantly different. Bars represent 
standard deviation, n = 4. 

3.5. Soil Infiltration Rate 
The results showed that increasing crop residue enhanced the final soil infiltration in 

the CT system, but no significant differences were noticed among the residue treatments 
(Figure 9). In the NT system, R50 and higher rates significantly (p < 0.05)) increased final 
soil infiltration compared to R0. The interaction effects of crop residue and soil tillage had 
no significant effect on soil final infiltration (Figure 10). The highest value of final soil 
infiltration (13 mm hr−1) was recorded in R100 (Figure 9). Higher SOC content, greater sta-
bility of soil aggregates, improved soil porosity, which plays significant roles in increasing 
soil physical and hydrological properties, are the reasons for higher soil infiltration under 
residue treatments [99]. According to our results, Johnson et al. [107] reported that soil 
infiltration was two times higher under the full return of residue (>7 Mg ha–1) than under 
less return of residue (<2 Mg ha–1). Also, Chalise et al. [69] found a 66% increase in soil 
infiltration under residue retention compared to no residue in a no-till corn-soybean rota-
tion. Besides, Blanco-Canqui et al. [25] in Ohio found four-times lower soil infiltration 
with none residue (0%) than 100% residue. These reductions were attributed to soil sur-
face sealing or crusting, consolidation caused by raindrops impacting the unmulched soil 
surface, and lower surface-connected earthworm burrows [25]. 

 

Figure 9. The effect of residue rates on soil infiltration in conventional (CT) and no-tillage (NT)
systems. Means with the same letter in each tillage system are not significantly different. Bars
represent standard deviation, n = 4.

Agronomy 2021, 11, x   18 of 26 
 

 

Figure 9. The effect of residue rates on soil infiltration in conventional (CT) and no‒tillage (NT) 
systems. Means with the same letter in each tillage system are not significantly different. Bars rep-
resent standard deviation, n = 4. 

 
Figure 10. The interaction effect of residue rates and soil tillage on soil infiltration. Means with the 
same letter are not significantly different. Bars represent standard deviation, n = 4. 

3.6. Wheat and Corn Yield  
Overall, crop residue application to both conventional and no-tillage systems in-

creased wheat yield (Figure 11). In the CT system, the highest wheat total biomass (15 Mg 
ha−1), grain (7 Mg ha−1), and straw (8 Mg ha−1) yield were obtained from R100. The identical 
values for R100 under NT system were 17.7, 8.8, and 9 Mg ha−1, respectively. Also, the 
wheat yield was significantly (p < 0.05) influenced by the interaction effects of residue rate 
and soil tillage, where all the applied residue rates resulted in significantly higher wheat 
total biomass, grain and straw yields under NT system compared to those under CT sys-
tem (Figure 12). Corn yield was not significantly affected neither by residue rate nor the 
interaction effects of residue rate and soil tillage (Figures 13 and 14), probably due to the 
short duration during the corn season, which is not sufficient for crop residue to show 
their actual potential on crop performance. An increasing trend in wheat yield could be 
attributed to increasing residue retention under NT system, reducing water loss and in-
creasing moisture storage due to finer texture [108], improving soil quality, adjusting soil 
temperature, increasing soil organic matter and soil aggregate stability [109], and stronger 
nutrient availability [110]. In addition, improved soil organic C which stimulates soil mi-
crobial activity could have contributed to increased wheat yield [14,65,100,111]. Also, a 
higher yield of NT in the first year may reflect the consequence of improved soil condition 
under this system during previous years. Elevated positive correlations between wheat 
yield and soil available water and macronutrients (NPK) indicate better soil quality af-
fected by crop residue application to both CT and NT systems (Figures S3 and S4). Our 
results agree with other findings [25,110,112]. However, contradictory findings have also 
been reported in some studies. For example, Birrell et al. [113] concluded that corn harvest 
had little effect on soil quality or crop yield. Ulmer et al. [114] also reported that residue 
removal did not affect corn, soybean, and bean yields. These successful results can be 
compared to other strategies applied in recent research, such as the use of cover crops, 
where water availability and crop production were higher than leaving the soil bare 
[115,116]. 

Figure 10. The interaction effect of residue rates and soil tillage on soil infiltration. Means with the
same letter are not significantly different. Bars represent standard deviation, n = 4.

3.6. Wheat and Corn Yield

Overall, crop residue application to both conventional and no-tillage systems increased
wheat yield (Figure 11). In the CT system, the highest wheat total biomass (15 Mg ha−1),
grain (7 Mg ha−1), and straw (8 Mg ha−1) yield were obtained from R100. The identical
values for R100 under NT system were 17.7, 8.8, and 9 Mg ha−1, respectively. Also, the
wheat yield was significantly (p < 0.05) influenced by the interaction effects of residue
rate and soil tillage, where all the applied residue rates resulted in significantly higher
wheat total biomass, grain and straw yields under NT system compared to those under
CT system (Figure 12). Corn yield was not significantly affected neither by residue rate
nor the interaction effects of residue rate and soil tillage (Figures 13 and 14), probably due
to the short duration during the corn season, which is not sufficient for crop residue to
show their actual potential on crop performance. An increasing trend in wheat yield could
be attributed to increasing residue retention under NT system, reducing water loss and
increasing moisture storage due to finer texture [108], improving soil quality, adjusting soil
temperature, increasing soil organic matter and soil aggregate stability [109], and stronger
nutrient availability [110]. In addition, improved soil organic C which stimulates soil
microbial activity could have contributed to increased wheat yield [14,65,100,111]. Also, a
higher yield of NT in the first year may reflect the consequence of improved soil condition
under this system during previous years. Elevated positive correlations between wheat
yield and soil available water and macronutrients (NPK) indicate better soil quality affected
by crop residue application to both CT and NT systems (Figures S3 and S4). Our results
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agree with other findings [25,110,112]. However, contradictory findings have also been
reported in some studies. For example, Birrell et al. [113] concluded that corn harvest had
little effect on soil quality or crop yield. Ulmer et al. [114] also reported that residue removal
did not affect corn, soybean, and bean yields. These successful results can be compared
to other strategies applied in recent research, such as the use of cover crops, where water
availability and crop production were higher than leaving the soil bare [115,116].
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4. Conclusions

In this study, short-term investigation of applying crop residue from a lower rate (25%)
to a higher rate (100%) and the reduction of tillage under irrigated condition, registered
rapid and positive effects on soil physical and chemical properties and crop yield. Soil
organic C content, nutrient status, aggregate stability, infiltration, available water content,
and yields of wheat and corn in the semiarid region under both CT and NT systems were
higher in residue treatments compared to removal of residue. Applying residues at R100
followed by R75 and R50 led to significant increases in most of the measured parameters.
Our results advocate establishing and monitoring long-term studies on applying crop
residues to investigate the full potential of crop residue application and management.
In the NT system, the studied characteristics showed a significant increase at a depth of
0–10 cm compared to a depth of 10–20 cm, while in the conventional tillage system, the
changes in the studied characteristics at the two depths were almost uniform. Overall,
considering the positive results of crop residue on soil quality and crop yield in this study
at short-term period, and the necessity of using crop residue to meet other needs of farmers,
such as livestock feeding, roof surface isolation, building making, etc., it is crucial to be
kept at least 50% of crop residue on the soil surface after harvest in agricultural systems in
similar semiarid environments.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
395/11/2/302/s1, Figure S1. The regression between soil organic carbon with soil mean weigh
diameter (MWDW, MWDd) (a), wet and dry stable aggregates (WSA, DSA) (b), soil available water
(SAW), and soil final infiltration (FI) (c) in the CT system. Figure S2. The regression between soil
organic carbon with soil mean weigh diameter (MWDW, MWDd) (a), wet and dry stable aggregates
(WSA, DSA) (b), soil available water (SAW), and soil final infiltration (FI) (c) in the NT system. Figure
S3. The regression between wheat total biomass (TB), grain yield (GY), straw yield (SY) with soil
available water (a), soil total nitrogen (b), soil available phosphorous (c), soil available potassium
(d) in the CT system. Figure S4. The regression between wheat total biomass (TB), grain yield (GY),
straw yield (SY) with soil available water (SAW) (a), soil total nitrogen (b), soil available phosphorous
(c), soil available potassium (d) in the NT system.
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