
*Corresponding author: E-mail: at.goodhead@gmail.com

Asian Journal of Research in Computer Science

8(4): 21-34, 2021; Article no.AJRCOS.67791
ISSN: 2581-8260

Parallel Scheduling of Grid Jobs on Quadcore
Systems using Grouping Methods

Goodhead T. Abraham1*, Evans F. Osaisai2 and Nicholas S. Dienagha1

1
Computer Science Department Niger Delta University, Bayelsa State, Nigeria.

2Mathematics Department, Niger Delta University State, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. Author GTA designed the study,
performed the statistical analysis, wrote the protocol, and wrote the first draft of the manuscript.
Author EFO managed the analyses of the study. Author NSD managed the literature searches.

All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJRCOS/2021/v8i430207
Editor(s):

(1) Dr. Manish Mahajan, CGC College of Engineering, India.
Reviewers:

(1) Liang-ze-nan, Hohai University, China.
(2) Abhishek Gudipalli , Vellore Institute of Technology, India

Complete Peer review History: http://www.sdiarticle4.com/review-history/67791

Received 05 March 2021
Accepted 10 May 2021

Published 17 May 2021

ABSTRACT

As Grid computing continues to make inroads into different spheres of our lives and multicore
computers become ubiquitous, the need to leverage the gains of multicore computers for the
scheduling of Grid jobs becomes a necessity. Most Grid schedulers remain sequential in nature
and are inadequate in meeting up with the growing data and processing need of the Grid. Also, the
leakage of Moore’s dividend continues as most computing platforms still depend on the underlying
hardware for increased performance. Leveraging the Grid for the data challenge of the future
requires a shift away from the traditional sequential method. This work extends the work of [1] on a
quadcore system. A random method was used to group machines and the total processing power
of machines in each group was computed, a size proportional to speed method is then used to
estimates the size of jobs for allocation to machine groups. The MinMin scheduling algorithm was
implemented within the groups to schedule a range of jobs while varying the number of groups and
threads. The experiment was executed on a single processor system and on a quadcore system.
Significant improvement was achieved using the group method on the quadcore system compared
to the ordinary MinMin on the quadcore. We also find significant performance improvement with
increasing groups. Thirdly, we find that the MinMin algorithm also gained marginally from the
quadcore system meaning that it is also scalable.

Original Research Article

Abraham et al.; AJRCOS, 8(4): 21-34, 2021; Article no.AJRCOS.67791

22

Keywords: Quadcore; multicore-environment; parallel scheduling; multi-scheduling; machine

grouping; job grouping.

1. INTRODUCTION

Most scheduling algorithms are hardly
parallelisable [2]. Hence, most attempts at
parallelisation rely on the underlying hardware,
this practice does not exploit the parallelism
potentials of the underlying hardware to the
maximum. The dawn of the multicore era
combined with the growing processing need of
the computing world (especially on the Grid) calls
for a change from sequential scheduling to
parallel scheduling or a method that enhances
parallel scheduling. This paper employs
grouping methods to exploit parallelism on
multicore systems.

The remainder of this paper is organized as
follows: Section 2 discusses related work.
Section 3 presents the proposed random
grouping method of grouping machines and
speed proportional to size method of grouping
jobs. It also discusses the simulations used,
experimental setup and the configuration of the
machines. Section 3 also discusses the result of
the experiment, analyses and evaluation of the
result. Section 4 makes recommendation.
Conclusion and thoughts for future work are
presented in section 5.

2. RELATED WORK

Amdahl [2] hinted that parallelising the sequential
portion of an algorithm would z result in speedup
of processing rate for every processor added to
the system. However, [3] pointed out that
hardware gains are not been reflected
comparatively in software gains (Moore’s
dividend). [4] also revealed how Microsoft code
was eating up the Moore’s dividend by doubling
up in every 866 days leading to the claim by [5]
that multicore systems are not being fully
exploited but have the potential for high
performance computing if programmed
efficiently.

Advances in the hardware technology has
birthed the multicore era , [6] which is currently
seen as the hardware technology of today and
the foreseeable future [7,8].

Multicore systems are mainly for parallel
processing and performances speedup, to gain

from multicore systems, [3] suggested
parallelisation of codes and design and
development of parallel programming languages.
These advances in computing hardware
technology therefore necessitates a shift in
programming culture from sequential to parallel
[9,10]. However, most sequential algorithms are
not completely parallelisable; this necessitates a
general method that enhances parallelism in the
execution of all algorithms. Grouping jobs and
machines before executing independent
scheduling instances within the groups
(multischeduling) enhances parallelism on the
multicore systems and increases throughput [11].
A parallel scheduling method that exploits the
benefits of multicore technology will be helpful in
the defined path of the Grid, facilitating increased
throughput and increase scalability. This work
aim is to develop a dynamic grouping method
that enhances parallelism and increases
throughput in the scheduling of grid jobs.

2.1 Group Scheduling

The benefits of job grouping have been exploited
severally and extensively by researchers; [12]
discussed the advantages of distributing jobs
among independent grid sites and implemented
a method that executed jobs in parallel in
multiple grid sites. [13]. grouped small fine-
grained jobs to form coarse-graine jobs before
scheduling to reduce the communication
computation ratio (CCR) that impedes
performance. [14] also grouped similar jobs and
identifies the group to which the newly submitted
job belongs. [15] grouped jobs based on
processing capability, bandwidth and memory-
size of processing elements. [16] employed job
grouping to maximize resource utilization,
scalability, robustness, efficiency and load
balancing ability of the grid for scheduling of jobs
in grid computing. [17] grouped fine-grained jobs
into coarse-grained jobs before sending to grid
resources. The method successfully minimized
the processing time of jobs.

The researches above exploited grouping not for
parallelisation but for improved processing. This
research ‘Parallel scheduling of grid jobs on
duocore systems using grouping method’
exploits groups not to reduce CCR or reduce the
processing time but to create platforms for
parallelism and multi-scheduling. The method

Abraham et al.; AJRCOS, 8(4): 21-34, 2021; Article no.AJRCOS.67791

23

selects grid jobs and grid machines into
independent group pairs before employing
several instances of scheduling (using multiple
threads) to simultaneously execute in parallel
(multischeduling). This is targeted at increasing
parallelism and attains high degree of scheduling
throughput.

2.2 Some Parallel Scheduling Attempts

Several attempts have been made by
researchers to exploited parallelism on parallel
systems; [18] used a non-deterministic approach
(memetic algorithm) to solve the scheduling
problem in a GPU environment. [19] algorithm
used a two-list method to solved problems on a
GPU using CUDA (Compute Unified Device
Architecture) and [10] parallelized the Doolittle
algorithm on multicores and achieved a
performance better than the serial version of the
Doolittle algorithm. [20] also implemented a
parallel version of self-organizing maps algorithm
(SOM) on a parallel architecture and achieved
good performance against the CPU version.

Most of these researches never exploited any
known method to increase parallelism but relied
solely on the underlying hardware. Also, they
executed on specialised hardware CUDA and
GPUs.

This work is based on the general-purpose
environment and the method is based on a
deterministic algorithm that gives control of
execution time. Thirdly, this research exploits
grouping to achieve greater efficiency through
parallelisation.

2.2.1 Parallel scheduling methods using

grouping

[21] executed a non-dynamic priority grouping
method and achieved speedup in scheduling of
jobs. [11] also executed dynamic grouping
methods and achieved significant gain in
scheduling Grid jobs. Noting that grouping of
Grid jobs and machines offers a platform for
parallelism, [22] explored various strategies to
group machines and Grid jobs before scheduling
on HPC system. All the methods recorded
increase in throughput based on the volume of
jobs scheduled [1]. Experimented a random
grouping method and recorded significant
improvement on a duocore machine. The
researchers noted that investigating further on a
system with more cores was necessary to know
the effect of more cores on the grouping method.

This work is an effort aimed at investigating the
effect of grouping and parallel-scheduling on a
quadcore system. The method used is same as
the one on the earlier study on duocore
systems.

2.2.2 Parallel scheduling of Grid jobs on a

quadcore system

This study aims at harnessing the parallelism
inherent in the multicore architecture by
exploiting a method that group jobs and
machines before multi-scheduling independently
in the groups (the MinMin scheduling algorithm is
used as benchmark). The same number of
machine/job groups is used in each run while
varying the number of threads. Grouping jobs
and machines before scheduling on multicores
allows multiple independent scheduling instances
to occur simultaneously (multi-scheduling).

The MinMin algorithm [23] calculates the
completion time of all jobs on all machines and
assigns jobs with the minimum completion time
to the processor with earliest completion time.
The MinMin algorithm was used as benchmark
because it has been used by several researchers
as benchmark [24-30,18] and it offers easy and
robust implementation.

2.3 Machine Grouping

Machines were randomly selected into groups,
for each machine randomly selected to a group,
the total processing power of each group is
updated with the processing power of the
selected machine. The algorithm used to
randomly group machines as shown in Table 1 is
the same algorithm used in [1].

2.4 Job Grouping

The job grouping method assigns jobs to
machine groups based on a ratio calculated from
the processing power of the machines in the
group. Called size_proportional_to_speed, the
method estimates the size of all jobs and
ensures equitable distribution using
proportionality of jobs to machine. Jobs are
assigned to groups based on the ratio of the
performance configuration of the machines in
that group. From the algorithm in Table 2, the
first set of N jobs is allocated to the first group
based on the ratio, then the next N jobs are
allocated to the next machine group based on
the group’s ratio. This continues until all jobs are

Abraham et al.; AJRCOS, 8(4): 21-34, 2021; Article no.AJRCOS.67791

24

allocated. This algorithm for job allocation is the
same algorithm implemented in [1].

2.5 Grid Site

Grid-sites are characterised with unique
attributes viz: Network Bandwidth, number of
computing machines, Grid Id. Also, machines in
each Grid -site are unique with distinct attributes
like CPU; RAM; Bandwidth. The simulation of
Grid sites in the experiment was done to reflect
these distinct attributes. Table 3 shows the
features and characteristics of Grid site used in
the simulation experiment.

2.6 Grid Machines

Every Grid site contains hundreds to thousands
of computing machines, and each computing
machine is distinct by its configuration. Grid
machines or compute resources are

characterized by distinct features like the
machine’s identification (MId), speed of
processor (SP), number of processor cores
(NPC) and RAM size.

2.6.1 Simulation of grid, CPU speed and

number of cores

The Grid was simulated to be characterized by
the following attributes: Category; CPU; RAM;
Bandwidth. For example {A; 1200; 2000000;
1000} represents Grid site A, CPU 1200, RAM
2000000, and Bandwidth 1000.

The computer machine was defined with the
following attributes: CORES; CPU; RAM. For
instance {2; 2000; 2000000} represents a Grid
resource (machine) with 2CPUs, 2000 MHz
(2GHz) and 2000000B (2MB). Table 4 shows the
characteristics of Grid machines used.

Table 1. Algorithm to group machines randomly

Random Algorithm to select machines for grouping

Step1: Start

Step2: Determine g (g is the number of job groups)

Step3: GroupSum = 0 (initialize group processing power)

Step4: TotalSum =0 (initialize total processing power of all groups)

Step5: Randomly

a. Select a machine iM

b. Insert to group i

c. Increment group processing power by iPM (GroupSum = GroupSum + iPM)

d. Increment group

e. Increment Total group processing power TotalSum = TotalSum + iPM)

Step6: Do step 5until all machines are assigned

Step7: Stop

Table 2. Algorithm to estimate size of job for allocation to groups

Job allocation algorithm

Step1: Start

Step2: Get processing power of all machines in each group GroupSum

Step3: Get cumulative processing power of all groups TotalSum

Step4: sum total size of all jobs JobsSum

Step5: Estimate size of jobs to be allocated to each group

Step6: Select first N jobs making up the ratio for group i

Step7: Increment group count

Step8: Select next N jobs making up the ratio for next groups

Step9: Repeat steps 7 to Step 8 until all jobs are assigned

Step10: Stop

Abraham et al.; AJRCOS, 8(4): 21-34, 2021; Article no.AJRCOS.67791

25

Table 3. Characteristics of Grid site used in the simulation

Features Characteristics Attributes
Network Bandwidth Every Grid site is connected to the Grid via a network and the speed of the network

connecting the Grid site determines to an extent the performance of the Grid. The
network bandwidth (NBW) or speed of a Grid site is therefore used as one of the
attributes to characterize a Grid site.

Network bandwidth or speed (NBW) are sub
categorized into; Super-Fast (SF), Very Fast (VF),
Medium Fast (MF) and Not Fast (NF) with weights 4,
3, 2 and 1 respectively.

Number of Machines This feature refers to the number of computers that the Grid site contains. The number of
machines within a Grid site can be arbitrary. It can be any number, in some cases due to
computer system characteristic of failure and repair, the number can vary from time to
time.

This number varies over time hence there is no need
for categorization

Grid ID This is the identification features of the Grid site. The Grid ID can be the name or number
used to identify the Grid

Name or number or combination of both

Table 4. Characteristics of grid site used in the simulation

Grid Site Characteristics Grid Site Characteristics

Number of
machines

Speed of CPU Number of CPU/
Cores

Number of
machines

Speed of CPU Number of
CPU/Cores

A 240 Machines 30
30
30
30
30
30
30
30

1GHz
2GHz
3GHz
4GHz
1GHz
2GHz
3GHz
4GHz

1
1
1
1
2
2
2
2

C 480 Machines 60
60
60
60
60
60
60
60

1.5GHz
2GHz
3.5GHz
4GHz
1.5GHz
2GHz
3.5GHz
4MHz

2
2
2
2
4
4
4
4

B 400 Machines 50
50
50
50
50
50
50
50

1.5GHz
2GHz
3.5GHz
4GHz
1.5GHz
2GHz
3.5GHz
4GHz

2
2
2
2
4
4
4
4

D600 Machines 50
50
50
50
50
50
50
50
50
50
50
50

1.5GHz
2GHz
3.5GHz
4GHz
1.5GHz
2GHz
3.5GHz
4GHz
1.5GHz
2GHz
3.5GHz
4GHz

2
2
2
2
4
4
4
4
8
8
8
8

Abraham et al.; AJRCOS, 8(4): 21-34, 2021; Article no.AJRCOS.67791

26

2.6.2 Source of jobs to the system

Jobs used for the experiment were downloaded
from the Grid Workloads Archive designed by
[31] to make traces of Grid workloads available
to researchers and developers.

2.7 Experimental Design

Two experiments each were carried-out on a
single processor system ad on a quadcore
system.

The first experiment executed the MinMin
algorithm on a single processor system to
schedule a range of (from 1000 jobs to 10000
jobs in steps of 1000).

The second experiment executed on a quadcore
system. It used the MinMin algorithm to schedule
a range of jobs from 1000 jobs to 10000 jobs in
steps of 1000.

The third experiment was executed on a single
processor system. It used the random method to
group machines then applied the
size_proportional_to-speed method to group jobs
before implementing the MinMin scheduling
algorithm within the paired groups to schedule
from 1000 jobs to 10000 jobs in steps of 1000.

The fourth experiments also executed on a
quadcore system; it used the random method to
group machines then applied the proportionality
method to group jobs before implementing the
MinMin scheduling algorithm within the paired
groups to schedule the same range of jobs as in
the first experiment.

In each of the four experiments, the number of
groups used was varied between 2, 4 and 8
groups, the number of threads used was varied
between 1, 2, 4 and 8. For each of the
combinations, the time taken to schedule was
recorded. Time of scheduling is the time taken to
schedule each set of jobs, that is the time taken
to schedule 1000, 2000, 3000, 4000, 5000, 6000,
7000, 8000, 9000, and 10000 jobs in turn by
each thread cardinalities. This experiment is the
same experiment used in [1].

2.8 System Properties

The properties of the systems are as follows:

1. SINGLE PROCESSOR SYSTEM:

Processor: Intel(R) Pentium(R) 4 CPU
3.00GHZ3.00GHz

RAM: 1.50 GB

Operating System: Windows XP Professional
Version 2002

2. QUADCORE:

Processor: Intel(R) Core(TM) i7-4770 CPU @
3.40GHz 3.40 GHz

RAM: 24.0GB
System Type: 64-bit Operating System, x64-

based processor
Operating System: Windows 8.1

3. RESULTS AND DATA ANALYSIS

This section discusses and compares result
between the ordinary MinMin and the Group
method. In the discussion, 1Thrds, 2Thrds,
4Thrds or 8Thrds refer to the number of threads
used in the experiment. SingleCPU or
SingleProc,1CPU or 1Proc refer to result
obtained on the single processor machine;
Quadcore represent result obtained on the
quadcore machine and 2Grp, 4Grp or 8Grp refer
to the number of groups used. Also, SpdRnd
refers to the method Size-Proportional-to-Speed.
A combination of Threads, groups and machines
are used in the analysis to denote results. For
instance, 2ThrdsSingleCPU 2Grps represent
result obtained using 2 threads and two groups
on the single processor system.

3.1 Performance of the Min Min Algorithm
on the Single Processor and
Quadcore Systems

Table 5 and Fig. 1 show the results and
performance of the ordinary MinMin on the two
machines (single processor and quadcore).
Using two threads, it took 1235755 Ms for the
single processor and 136818Ms for the quadcore
system to schedule the same range of jobs. The
MinMin algorithm on the quadcore performed
9.03 times or 88.93% better than MinMin
executed on the Single processor system. This is
an indication that the MinMin is also scalable as
it gained from the underlying parallelism of the
quadcore. Despite the MinMin algorithm
benefitting from the underlying parallelism of the
quadcore, we believe the gain is not significant
enough not to use a method that enhances
parallelism on quadcore. Analysis between the
grouping method and the ordinary MinMin will
reveal this. See section 5.2, 5.3 and 5.4.

3.2 Analysis of Result on the Quadcore
System

This analysis is for result between the ordinary
MinMin executed on the quadcore and group
method executed on the quadcore machine. The

Abraham et al.; AJRCOS, 8(4): 21-34, 2021; Article no.AJRCOS.67791

27

result is shown in Table 6 while Table 7 shows
the computed improvement over the MinMin in
multiples (X) and in percent (%).

On the quadcore; using two groups, the group
method performed better than the ordinary
MinMin by 2 times or 50%. With four groups, the
group method performed better than the MinMin
by approximately 4 times which represents about
75% and using eight groups, the group method
performed better than the MinMin by
approximately 7 times representing 86%. Fig. 2
shows that on the quadcore, as the number of
group increases, the performance of the group
method over the ordinary MinMin also improves.
It also shows that as the number of threads

increases on the quadcore, the performance of
the group method over the MinMin also
improved. This is because more threads increase
parallelism on the quadcore.

From this, we can deduce that the group method
expands the realm of parallelism as it increases
scheduling throughput.

On the improvement line in Fig. 2, a linear
trendline was inserted and the linear equation
was Y ≈ 2.4X – 0.5. This indicates that the
improvement (Y) depends on the number of
groups (X). Also, the R-Squared value of the
trendline is 0.98 which indicates that the trendline
fits perfectly to the improvement line.

Table 5. Result and performance of MinMin on a single processor and Quadcore systems

Jobs Limit MinMin2Thrds (SingleCPU) MinMin2Thrds (QuadCore)
1000 4500 399
2000 17672 1795
3000 40250 4222
4000 66922 7188
5000 90407 9994
6000 116922 12700
7000 154781 16690
8000 196768 21719
9000 244679 27989
10000 302854 34122
Total 1235755 136818

Average 123575.5 13681.8
Improvement over Single processor in multiple (X) 9.0321
Improvement over Single processor in percent (%) 88.9284

Fig. 1. Total of Min Min on different computer systems

0

200000

400000

600000

800000

1000000

1200000

1400000

2Thrds1CPU 2ThrdsQuadcore

Sc
h

e
d

u
le

 T
im

e
 (

M
s)

Total scheduling time on single processor and on quadcore

Scheduling time

Abraham et al.; AJRCOS, 8(4): 21-34, 2021; Article no.AJRCOS.67791

28

Table 6. Result of MinMin on quadcore machine

 One thread Two threads
 SpdRnd Method SpdRnd Method
No of jobs MinMin 2Grps 4Grps 8Grps MinMin 2Grps 4Grps 8Grps
1000 452 192 120 81 403 189 111 78
2000 1924 746 321 186 1775 759 337 196
3000 4178 1683 738 384 4203 1543 648 396
4000 7118 2889 1285 687 7431 2570 1297 671
5000 10013 4093 2230 1082 9903 4339 1928 1178
6000 12825 5921 3193 1522 12984 6433 3089 1568
7000 16685 8408 3964 2465 16872 9079 4315 2361
8000 21633 11298 5918 3447 21956 11261 5758 2855
9000 27624 14667 6914 4396 27778 14340 7082 4506
10000 34406 17414 8959 5405 34570 17385 10593 6379

Total 136858 67311 33642 19655 137875 67898 35158 20188
 Four threads
 SpdRnd Method
 MinMin 2Grps 4Grps 8Grps
 399 193 104 83
 1795 777 313 184
 4222 1643 648 397
 7188 2879 1309 667
 9994 4149 1904 966
 12700 6481 3183 1716
 16690 8559 4529 2283
 21719 10533 5606 2788
 27989 14378 7048 4141
 34122 17681 9935 4967

Total 136818

67273

34579

18192

Table 7. Performance improvement on quadcore machine with increasing groups and threads

 SpdRnd Method
 Improvement in Percent (%) Improvement in Multiples (X)
 Improvement 2Grps 4Grps 8Grps 2Grps 4Grps 8Grps
1 1 Thread 50.81691 75.41832 85.6384 2.033219 4.06807 6.963012
2 2 Threads 50.75394 74.50009 85.35775 2.030619 3.921583 6.829552
3 4 Threads 50.83030 74.72628 86.7035 2.033773 3.956679 7.520778
Aggr Improvement 50.80038 74.88156 85.89988 2.032537 3.98211 7.104448

3.3 Combination of the Results

This section combines and analyses the results
on the single processor machine and on the
quadcore machine. Table 8 shows the result and
the computed improvements. We compared the
best result of the MinMin (the one executed on
the quadcore) to result of group method
executed on the single processor and on
quadcore.

The MinMin executed on the quadcore
performed better than the group method
executed on the single processor by 4.41, 2.39

and 1.50 times. This represents about 77%, 58%
and 32% when using 2, 4 and 8 groups
respectively. This is shown in the negative
(falling) part of Fig. 3 (marked single processor).

The group method executed on the quadcore
system performed better than the MinMin
executed on quadcore by 2.03, 3.92 and 6.81
times representing 50%, 74% and 85% using 2,
4, and 8 groups respectively. This is also shown
in the rising part of Fig. 3 (marked quadcore).

Within the single processor system, there was an
average of 1.7 or 40% improvement between

Abraham et al.; AJRCOS, 8(4): 21-34, 2021; Article no.AJRCOS.67791

29

successive groups. 4 group performed better
than 2 group by 1.85 times or by 45%, 8 group
performed better than 4 group by 1.6 times or by
37% and 8 group performed better than 2 group
by 2.95 times or by 57.40%.

Within the quadcore system, there was an
average of 1.8 times or 45% improvement
between successive groups. 4 group performed
better than 2 group by 1.93 times (48%), 8 group
perform better than 4 group by 1.74 times (42%)
and 8 group performed better than 2 group by
3.36 times (70%).

Between the Single processor and the quadcore,
there was an average of 9 times or 85%
corresponding improvement between the groups.
Correspondingly, 2 groups on the quadcore
performed better than 2 groups on the single
processor by 8.9 times or 88%. Four groups on
the quadcore performed 9.36 times or 89% better
than 4 groups on the single processor while 8
groups on the quadcore performed 10.18 times
or 90% better than 8 groups on the single
processor system.

A trendline fitted through the improvement line
indicates a linear growth with equation: Y =
0.492x + 1.7913.
This equation indicates that improvement (Y) of
the group method within a computing system can
be determined by the number of groups (x).

The R-Squared value of the trendline is 0.2174
which indicates that the proportion of variance
between improvement and the number of groups
is low. This low fit is because of the use of the
group method on a single processor machine

was compared against result of MinMin on
quadcore machine (two different trends).
However, this analysis shows that the MinMin is
scalable on the quadcore but not as much as the
group method on the same system.

These analyses indicate that the group method
performed better on the quadcore and is best
suited for the multicore environment than the
single processor system.

The ordinary MinMin algorithm benefited
marginally from the parallelism on the Quadcore.
Hence it performed better than the grouping
method executed on a single processor system
where no parallelism was guaranteed.

3.4 General Discussion on the Results

From the result and analysis, it can be deduced
that within a group, the performance is slightly
impacted by differences in threads although this
was very minimal and insignificant compared to
the impact of groups on performance. Major
performance improvements were achieved with
groups across all platforms.

The MinMin algorithm executed on the Quadcore
system gained marginally from the underlying
parallelism of the system hence it performed
better than the grouping methods implemented
on the single processor system. This was
because the single processor system offered
minimal parallelism only on the level of threads
but not on the hardware which the group method
targeted.

Fig. 2. Performance of group method over MinMin with increasing groups and threads

y = 2.3995x - 0.5383
R² = 0.9853

0

1

2

3

4

5

6

7

8

2Grps 4Grps 8Grps

Im
p

ro
ve

m
en

t
(X

)

Improvement by Groups with varying threads

1Thrd 2Thrds 4Thrds Linear (2Thrds)

Abraham et al.; AJRCOS, 8(4): 21-34, 2021; Article no.AJRCOS.67791

30

Table 8. Combined result from single processor and Quadcore

 Single Processor Quadcore
 MinMin 2Grps 4Grps 8Grps 2Grps 4Grps 8Grps
1000 403 2360 1094 594 189 111 78
2000 1775 7907 3876 2031 759 337 196
3000 4203 17031 9063 4360 1543 648 396
4000 7431 28468 13656 9359 2570 1297 671
5000 9903 40453 22672 12985 4339 1928 1178
6000 12984 59781 32578 19062 6433 3089 1568
7000 16872 79499 42047 26234 9079 4315 2361
8000 21956 94781 54172 34453 11261 5758 2855
9000 27778 119609 67438 41250 14340 7082 4506
10000 34570 157970 82423 55282 17385 10593 6379
Total 137875 607859 329019 205610 67898 35158 20188
Average 13787.5 60785.9 32901.9 20561 6789.8 3515.8 2018.8
Improvement (X) 4.41 2.40 1.50 2.03 3.92 6.83
Improvement (%) 77 58 32 50 74 85
Improvement Across Group(X),
(%)

8grp to 2 grp
2.96, (57%)

4grp to 2grp
1.85, (45%)

8grp to 4grp
1.6, (37%)

8 grp to 2 grp
3.36, (70%)

4grp to 2 grp
1.93, (48%)

8 grp to 4grp
1.74, (42%)

Improvement quadcore vs single processor using corresponding groups
(X), (%)

 8.95, (88%) 9.36, (89%) 10.12, (90%)

Abraham et al.; AJRCOS, 8(4): 21-34, 2021; Article no.AJRCOS.67791

31

Fig. 3. Aggregate performance

On the quadcore, the group method performed
far better than the ordinary MinMin. This is
because the method exploited the advantages of
the groups and the parallelism on the system, the
improvement of the group method over the
ordinary MinMin on the quadcore system range
from 2 to 7 times depending on the number of
groups used.

Though all the machines are not timed at the
same speed, we can deduce from the analysis
that the grouping method expands the realm of
parallelism as it increases scheduling throughput.

4. RECOMMENDATIONS

Haven realized that sequential algorithms do not
fully optimize parallelism on parallel systems; to
ensure that the computer Grid grows in tandem
with advances made in computer hardware
technology. We recommend that grid schedulers
and applications be integrated with grouping
methods to enhances parallelism and increase
performance.

5. CONCLUSION

This work aimed at parallelising the scheduling of
Grid jobs on a quadcore system using job and
machine groups. The method executed on the
quadcore system yielded significant improvement

compared to the ordinary MinMin on the two
platforms. Every major advance in computing
technology comes with a paradigm shift in
programming [32] the proliferation of multicore
systems therefore calls for parallelisation of
programming methods. Since not all algorithms
are parallelisable; we propose the combine use
of job grouping and machine grouping in the
scheduling of Grid jobs.

FUTURE THOUGHTS

This research opens a new area of parallelisation
of the scheduler by grouping independent jobs
and machines. This work can be extended to
other scheduling (both sequential and parallel).
Though this work targeted independent jobs, the
method can also be extended to dependent jobs.
This will involve the same application of grouping
but cooperating jobs maybe carefully selected to
the same group, (and even if they are selected to
different groups) they are scheduled to the same
Grid site for processing – this will reduce the
delay in process communication.

Though different factors characterised the
performance of a system, the overall result
cannot be normalised or standardized. It will be
interesting to experiment on a set of systems
from the same family of CPU that shares same
features. This will help standardize the result.

y = 0.492x + 1.7913
R² = 0.2174

0

1

2

3

4

5

6

7

8

2Grps 4Grps 8Grps 2Grps 4Grps 8Grps

Single Processor Quadcore

Improvement in multiples (X)

Improvement(X)

Linear (Improvement(X))

Abraham et al.; AJRCOS, 8(4): 21-34, 2021; Article no.AJRCOS.67791

32

Haven experiment this work on single processor
system, duocore computer (Abraham and
Osaisai 2021), and now a quadcore system, the
next step will be to combine and analyse the
results for all three platforms and present in a
single paper.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Abraham GT, Osaisai EF. Parallel

scheduling of grid jobs on duo-core
systems using grouping method. Covenant
Journal of Informatics and Communication
Technology, in Publica; 2021.

2. Amdahl GM. Validity of the single
processor approach to achieving large
scale computing capabilities. AFIPS
Conference Proceedings - 1967 Spring
Joint Computer Conference, AFIPS
1967;483–485.
Available:https://doi.org/10.1145/1465482.
1465560

3. Larus J. Spending Moore’s dividend.
Communications of the ACM,
2009;52(5):62–69.
Available:https://doi.org/10.1145/1506409.
1506425

4. Myhrvold, N. The next fifty years of
software. ACM 97 Conference; 1997.

5. Wang PH, Collins JD, Chinya GN, Jiang H,
Tian X, Girkar M, Yang NY, Lueh GY,
Wang H. EXOCHI: Architecture and
programming environment for a
heterogeneous multi-core multithreaded
system. Proceedings of the ACM
SIGPLAN Conference on Programming
Language Design and Implementation
(PLDI), 2007;156–166.
Available:https://doi.org/10.1145/1250734.
1250753

6. Schauer B. Discovery Guides Multicore
Processors-A Necessity. In ProQuest
discovery guides; 2008.
Available:http://www.netrino.com/node/91

7. Zhuravlev S, Saez JC, Blagodurov S,
Fedorova A, Prieto M. Survey of
scheduling techniques for addressing
shared in multicore processors. ACM
Reference Format. 2012;45(4).
Available:https://doi.org/10.1145/2379776.
2379780

8. Dongarra J, Mathieu F, Thomas H,
Mathias J, Julien L, Yves R. Hierarchical
QR factorization algorithms for multi-core
clusters. Parallel Computing. 2013;39(4–
5):212–213.

9. Jin H, Jespersen D, Mehrotra P, Biswas R,
Huang L, Chapman B. High performance
computing using MPI and OpenMP on
multi-core parallel systems. Parallel
Computing. 2011;37(9):562–575.
Available:https://doi.org/10.1016/j.parco.20
11.02.002

10. Mustafa B, Rafiya, S, Waseem A. Parallel
Implementattion of Doolittle Algorithm
using Open MP for multicore machines.
2015 IEEE International Advance
Computing Conference. 2015;575–578.

11. Abraham GT, James A, Yaacob N.
Priority-grouping method for parallel multi-
scheduling in Grid. Journal of Computer
and System Sciences, 2015b;81(6):943–
957.
Available:https://doi.org/10.1016/j.jcss.201
4.12.009

12. Ernemann C, Hamscher V,
Schwiegelshohn U, Yahyapour R, Streit A.
On Advantages of Grid Computing for
Parallel Job Scheduling. 2nd IEEE/ACM
International Symposium on Cluster
Computing and the Grid. 2002;339–39.
Available:https://ieeexplore.ieee.org/abstra
ct/document/1540439/

13. Muthuvelu N, Liu J, Soe L, Venugopal S,
Sulistio A, Buyya R. A dynamic job
grouping-based scheduling for deploying
applications with fine-grained tasks on
global grids. Australian Workshop on Grid
Computing and E-Research, 2005;41–48.
Available:https://dl.acm.org/citation.cfm?id
=1082297

14. Selvi S, Thamarai M, Sheeba, santha K,
Prabavathi, K, Kannan G. Estimating job
execution time and handling missing job
requirements using rough set in grid
scheduling. International Conference on
Computer Design and Applications.
2010;295–301.
Available:https://ieeexplore.ieee.org/abstra
ct/document/5541135/

15. Soni VK, Sharma R, Mishra Manoj K.
Grouping-based job scheduling model in
grid computing. In World Academy of
Science, Engineering and
Technology.2010;41.
Available:http://citeseerx.ist.psu.edu/viewd
oc/download?doi=10.1.1.294.2467&rep=re
p1&type=pdf

Abraham et al.; AJRCOS, 8(4): 21-34, 2021; Article no.AJRCOS.67791

33

16. Sharma R, Soni VK, Mishra MK, Bhuyan
P, Utpal CD. An agent based dynamic
resource scheduling model with FCFS-job
grouping strategy in grid computing. Waset
ICCGCS; 2010.
Available:https://www.academia.edu/downl
oad/5302242/v64-86.pdf

17. Mon TZ, Cho MM. MIPS group job
scheduling model for deploying
applications. International Conference on
Advances in Engineering and Technology
(ICAET). 2014;1234–1245.
Available:https://doi.org/10.15242/IIE.E031
4069

18. Pinel F, Dorronsoro B, Bouvry P. Solving
very large instances of the scheduling of
independent tasks problem on the GPU.
Journal of Parallel and Distributed
Computing Parallel Distributed Computing.
2012;73(1):101–110.
Available:https://doi.org/10.1016/j.jpdc.201
2.02.018

19. Wan L, Li K, Liu J, Li K. GPU
implementation of a parallel two-list
algorithm for the subset-sum problem.
Concurrency and Computation: Practice
and Experience. 2015;27(1):119–145.

20. Cuomo S, De Michele P, Di Nardo E,
Marcellino L. Parallel implementation of a
machine learning algorithm on GPU.
Journal of Parallel Programming.
2018;46(5):923–942.

21. Abraham GT, James A, Yaacob N. Group-
based Parallel Multi-scheduler for Grid
computing. Future Generation Computer
Systems. 2015a;50:140–153.
Available:https://doi.org/10.1016/j.future.20
15.01.012

22. Abraham GT. Group-based parallel multi-
scheduling methods for grid computing.
Coventry University; 2016.

23. Ibarra OH, Kim CE. Heuristic algorithms
for scheduling independent tasks on
nonidentical processors. Journal of the
ACM. 1977;24(2):280–289.
Available:https://dl.acm.org/doi/abs/10.114
5/322003.322011

24. Canabe M, Nesmachnow S. Parallel
implementations of the MinMin
heterogeneous computing scheduler in
GPU. CLEI Electronic Journal.
2012;15(3):8–8.
Available:http://www.scielo.edu.uy/scielo.p
hp?pid=S0717-
50002012000300009&script=sci_arttext&tl
ng=pt

25. Etminani K, Naghibzadeh M. A min-min
max-min selective algorihtm for grid task
scheduling. In 2007 3rd IEEE/IFIP
International Conference in Central Asia
on Internet, 2007;1–7.

Available:https://ieeexplore.ieee.org/abstra
ct/document/4401694/

26. Freund RF, Gherrity M, Ambrosius S,
Campbell M, Halderman M, Hensgen D,
Siegel HJ. Scheduling resources in multi-
user, heterogeneous, computing
environments with SmartNet. In
Proceedings Seventh Heterogeneous
Computing Workshop IEEE(HCW 98).
1998;184–199.

Available:https://ieeexplore.ieee.org/abstra
ct/document/666558/

27. Lavanya M, Shanthi B, Saravanan S. Multi
objective task scheduling algorithm based
on SLA and processing time suitable for
cloud environment. Computer
Communications. 2020;151:183–
195.

Available:https://www.sciencedirect.com/sc
ience/article/pii/S014036641930492X

28. Maheswaran M, Ali S, Siegel H, Hensgen
D, Freund RF. Dynamic mapping of a class
of independent tasks onto heterogeneous
computing systems. Journal of Parallel and
Distributed Computing. 1999;59(2):107–
131.

Available:https://www.sciencedirect.com/sc
ience/article/pii/S0743731599915812

29. Mishra SK, Sahoo B. Load balancing in
cloud computing: A big picture. Journal of
King Saud University - Computer and
Information Sciences. 2020;32(2):149–
158.

Available:https://www.sciencedirect.com/sc
ience/article/pii/S1319157817303361

30. Zhou Z, Li F, Zhu H, Xie H, Jemal HA,
Morshed UC. An improved genetic
algorithm using greedy strategy toward
task scheduling optimization in cloud
environments. Neural Computing and
Applications, 2020;32(6):1531–
1541.

Available:https://link.springer.com/article/1
0.1007/s00521-019-04119-7

31. Iosup A, Li H, Jan M, Anoep S, Dumitrescu
C, Wolters L, Epema DHJ. The Grid
Workloads Archive. Future Generation
Computer Systems. 2008;24:672–
686.

Abraham et al.; AJRCOS, 8(4): 21-34, 2021; Article no.AJRCOS.67791

34

Available:https://doi.org/10.1016/j.future.20
08.02.00Bell G.

32. Bell’s law for the birth and death of
computer classes: A theory of the

computer’s evolution. IEEE Solid-State
Circuits Society Newsletter. 2008;13
(4):8–19.

© 2021 Abraham et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://www.sdiarticle4.com/review-history/67791

