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ABSTRACT 
 

As Grid computing continues to make inroads into different spheres of our lives and multicore 
computers become ubiquitous, the need to leverage the gains of multicore computers for the 
scheduling of Grid jobs becomes a necessity. Most Grid schedulers remain sequential in nature 
and are inadequate in meeting up with the growing data and processing need of the Grid. Also, the 
leakage of Moore’s dividend continues as most computing platforms still depend on the underlying 
hardware for increased performance. Leveraging the Grid for the data challenge of the future 
requires a shift away from the traditional sequential method. This work extends the work of [1] on a 
quadcore system. A random method was used to group machines and the total processing power 
of machines in each group was computed, a size proportional to speed method is then used to 
estimates the size of jobs for allocation to machine groups. The MinMin scheduling algorithm was 
implemented within the groups to schedule a range of jobs while varying the number of groups and 
threads. The experiment was executed on a single processor system and on a quadcore system. 
Significant improvement was achieved using the group method on the quadcore system compared 
to the ordinary MinMin on the quadcore. We also find significant performance improvement with 
increasing groups. Thirdly, we find that the MinMin algorithm also gained marginally from the 
quadcore system meaning that it is also scalable.  
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1. INTRODUCTION 
 
Most scheduling algorithms are hardly 
parallelisable [2]. Hence, most attempts at 
parallelisation rely on the underlying hardware, 
this practice does not exploit the parallelism 
potentials of the underlying hardware to the 
maximum. The dawn of the multicore era 
combined with the growing processing need of 
the computing world (especially on the Grid) calls 
for a change from sequential scheduling to 
parallel scheduling or a method that enhances 
parallel scheduling.  This paper employs 
grouping methods to exploit parallelism on 
multicore systems. 
 
The remainder of this paper is organized as 
follows: Section 2 discusses related work. 
Section 3 presents the proposed random 
grouping method of grouping machines and 
speed proportional to size method of grouping 
jobs. It also discusses the simulations used, 
experimental setup and the configuration of the 
machines. Section 3 also discusses the result of 
the experiment, analyses and evaluation of the 
result. Section 4 makes recommendation. 
Conclusion and thoughts for future work are 
presented in section 5. 

  
2. RELATED WORK 
 
Amdahl [2] hinted that parallelising the sequential 
portion of an algorithm would z result in speedup 
of processing rate for every processor added to 
the system. However, [3] pointed out that 
hardware gains are not been reflected 
comparatively in software gains (Moore’s 
dividend). [4] also revealed how Microsoft code 
was eating up the Moore’s dividend by doubling 
up in every 866 days leading to the claim by [5] 
that multicore systems are not being fully 
exploited but have the potential for high 
performance computing if programmed 
efficiently. 

 
Advances in the hardware technology has 
birthed the multicore era , [6] which is currently 
seen as the hardware technology of today and 
the foreseeable future  [7,8]. 
 

Multicore systems are mainly for parallel 
processing and performances speedup, to gain 

from multicore systems, [3] suggested 
parallelisation of codes and design and 
development of parallel programming languages. 
These advances in computing hardware 
technology therefore necessitates a shift in 
programming culture from sequential to parallel 
[9,10]. However, most sequential algorithms are 
not completely parallelisable; this necessitates a 
general method that enhances parallelism in the 
execution of all algorithms. Grouping jobs and 
machines before executing independent 
scheduling instances within the groups 
(multischeduling) enhances parallelism on the 
multicore systems and increases throughput [11]. 
A parallel scheduling method that exploits the 
benefits of multicore technology will be helpful in 
the defined path of the Grid, facilitating increased 
throughput and increase scalability. This work 
aim is to develop a dynamic grouping method 
that enhances parallelism and increases 
throughput in the scheduling of grid jobs. 
 

2.1 Group Scheduling 
 

The benefits of job grouping have been exploited 
severally and extensively by researchers; [12] 
discussed the advantages of distributing jobs 
among independent grid sites and implemented 
a method that executed jobs in parallel in 
multiple grid sites. [13]. grouped small fine-
grained jobs to form coarse-graine jobs before 
scheduling to reduce the communication 
computation ratio (CCR) that impedes 
performance. [14] also grouped similar jobs and 
identifies the group to which the newly submitted 
job belongs. [15] grouped jobs based on 
processing capability, bandwidth and memory-
size of processing elements. [16] employed job 
grouping to maximize resource utilization, 
scalability, robustness, efficiency and load 
balancing ability of the grid for scheduling of jobs 
in grid computing. [17] grouped fine-grained jobs 
into coarse-grained jobs before sending to grid 
resources. The method successfully minimized 
the processing time of jobs. 
 
The researches above exploited grouping not for 
parallelisation but for improved processing. This 
research ‘Parallel scheduling of grid jobs on 
duocore systems using grouping method’ 
exploits groups not to reduce CCR or reduce the 
processing time but to create platforms for 
parallelism and multi-scheduling. The method 
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selects grid jobs and grid machines into 
independent group pairs before employing 
several instances of scheduling (using multiple 
threads) to simultaneously execute in parallel 
(multischeduling). This is targeted at increasing 
parallelism and attains high degree of scheduling 
throughput.  
 

2.2 Some Parallel Scheduling Attempts 
 
Several attempts have been made by 
researchers to exploited parallelism on parallel 
systems; [18] used a non-deterministic approach 
(memetic algorithm) to solve the scheduling 
problem in a GPU environment. [19] algorithm 
used a two-list method to solved problems on a 
GPU using CUDA (Compute Unified Device 
Architecture) and  [10] parallelized the Doolittle 
algorithm on multicores and achieved a 
performance better than the serial version of the 
Doolittle algorithm. [20] also implemented a 
parallel version of self-organizing maps algorithm 
(SOM) on a parallel architecture and achieved 
good performance against the CPU version. 
 
Most of these researches never exploited any 
known method to increase parallelism but relied 
solely on the underlying hardware. Also, they 
executed on specialised hardware CUDA and 
GPUs.  
 
This work is based on the general-purpose 
environment and the method is based on a 
deterministic algorithm that gives control of 
execution time. Thirdly, this research exploits 
grouping to achieve greater efficiency through 
parallelisation. 
 
2.2.1 Parallel scheduling methods using 

grouping 

  
[21] executed a non-dynamic priority grouping 
method and achieved speedup in scheduling of 
jobs. [11] also executed dynamic grouping 
methods and achieved significant gain in 
scheduling Grid jobs. Noting that grouping of 
Grid jobs and machines offers a platform for 
parallelism, [22] explored various strategies to 
group machines and Grid jobs before scheduling 
on HPC system. All the methods recorded 
increase in throughput based on the volume of 
jobs scheduled [1]. Experimented a random 
grouping method and recorded significant 
improvement on a duocore machine. The 
researchers noted that investigating further on a 
system with more cores was necessary to know 
the effect of more cores on the grouping method. 

This work is an effort aimed at investigating the 
effect of grouping and parallel-scheduling on a 
quadcore system. The method used is same as 
the one on the earlier study on duocore  
systems. 
 
2.2.2 Parallel scheduling of Grid jobs on a 

quadcore system  
 
This study aims at harnessing the parallelism 
inherent in the multicore architecture by 
exploiting a method that group jobs and 
machines before multi-scheduling independently 
in the groups (the MinMin scheduling algorithm is 
used as benchmark). The same number of 
machine/job groups is used in each run while 
varying the number of threads. Grouping jobs 
and machines before scheduling on multicores 
allows multiple independent scheduling instances 
to occur simultaneously (multi-scheduling).  
 
The MinMin algorithm [23] calculates the 
completion time of all jobs on all machines and 
assigns jobs with the minimum completion time 
to the processor with earliest completion time. 
The MinMin algorithm was used as benchmark 
because it has been used by several researchers 
as benchmark [24-30,18] and it offers easy and 
robust implementation.  
 

2.3 Machine Grouping 
 

Machines were randomly selected into groups, 
for each machine randomly selected to a group, 
the total processing power of each group is 
updated with the processing power of the 
selected machine. The algorithm used to 
randomly group machines as shown in Table 1 is 
the same algorithm used in   [1].  
 

2.4 Job Grouping 
 
The job grouping method assigns jobs to 
machine groups based on a ratio calculated from 
the processing power of the machines in the 
group. Called size_proportional_to_speed, the 
method estimates the size of all jobs and 
ensures equitable distribution using 
proportionality of jobs to machine. Jobs are 
assigned to groups based on the ratio of the 
performance configuration of the machines in 
that group. From the algorithm in Table 2, the 
first set of N jobs is allocated to the first group 
based on the ratio, then the next N jobs are 
allocated to the next machine group based on 
the group’s ratio. This continues until all jobs are 
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allocated. This algorithm for job allocation is the 
same algorithm implemented in [1].  
 

2.5 Grid Site 
 

Grid-sites are characterised with unique 
attributes viz: Network Bandwidth, number of 
computing machines, Grid Id. Also, machines in 
each Grid -site are unique with distinct attributes 
like CPU; RAM; Bandwidth. The simulation of 
Grid sites in the experiment was done to reflect 
these distinct attributes. Table 3 shows the 
features and characteristics of Grid site used in 
the simulation experiment. 
 

2.6 Grid Machines 
 

Every Grid site contains hundreds to thousands 
of computing machines, and each computing 
machine is distinct by its configuration. Grid 
machines or compute resources are 

characterized by distinct features like the 
machine’s identification (MId), speed of 
processor (SP), number of processor cores 
(NPC) and RAM size. 

 
2.6.1 Simulation of grid, CPU speed and 

number of cores 
 
The Grid was simulated to be characterized by 
the following attributes: Category; CPU; RAM; 
Bandwidth. For example {A; 1200; 2000000; 
1000} represents Grid site A, CPU 1200, RAM 
2000000, and Bandwidth 1000. 
 
The computer machine was defined with the 
following attributes: CORES; CPU; RAM.  For 
instance {2; 2000; 2000000} represents a Grid 
resource (machine) with 2CPUs, 2000 MHz 
(2GHz) and 2000000B (2MB). Table 4 shows the 
characteristics of Grid machines used. 

 

Table 1. Algorithm to group machines randomly 
 

Random Algorithm to select machines for grouping 

Step1: Start 

Step2:  Determine g (g is the number of job groups) 

Step3: GroupSum  = 0 (initialize group processing power) 

Step4: TotalSum =0 (initialize total processing power of all groups) 

Step5: Randomly 

a. Select a machine iM  

b. Insert to group i 

c. Increment group processing power by iPM  ( GroupSum  = GroupSum  + iPM ) 

d. Increment group 

e. Increment Total group processing power TotalSum = TotalSum + iPM ) 

Step6: Do step 5until all machines are assigned 

Step7: Stop 
 

Table 2. Algorithm to estimate size of job for allocation to groups 
 

Job allocation algorithm 

Step1: Start 

Step2: Get processing power of all machines in each group GroupSum  

Step3: Get cumulative processing power of all groups TotalSum  

Step4: sum total size of all jobs JobsSum  

Step5: Estimate size of jobs to be allocated to each group  

Step6: Select first N jobs making up the ratio for group i 

Step7: Increment group count  

Step8: Select next N jobs making up the ratio for next groups  

Step9: Repeat steps 7 to Step 8 until all jobs are assigned 

Step10: Stop 
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Table 3. Characteristics of Grid site used in the simulation 
 

Features Characteristics Attributes  
Network Bandwidth Every Grid site is connected to the Grid via a network and the speed of the network 

connecting the Grid site determines to an extent the performance of the Grid. The 
network bandwidth (NBW) or speed of a Grid site is therefore used as one of the 
attributes to characterize a Grid site.  

Network bandwidth or speed (NBW) are sub 
categorized into; Super-Fast (SF), Very Fast (VF), 
Medium Fast (MF) and Not Fast (NF) with weights 4, 
3, 2 and 1 respectively. 

Number of Machines  This feature refers to the number of computers that the Grid site contains. The number of 
machines within a Grid site can be arbitrary. It can be any number, in some cases due to 
computer system characteristic of failure and repair, the number can vary from time to 
time. 

This number varies over time hence there is no need 
for categorization 
 
 

Grid ID This is the identification features of the Grid site. The Grid ID can be the name or number 
used to identify the Grid  

Name or number or combination of both 

 
Table 4. Characteristics of grid site used in the simulation 

 
Grid Site Characteristics Grid Site Characteristics 

Number of 
machines  

Speed of CPU  Number of CPU/ 
Cores 

Number of 
machines  

Speed of CPU  Number of 
CPU/Cores 

A 240 Machines 30 
30 
30 
30 
30 
30 
30 
30 

1GHz 
2GHz 
3GHz 
4GHz 
1GHz 
2GHz 
3GHz 
4GHz 

1 
1 
1 
1 
2 
2 
2 
2 

C 480 Machines 60 
60 
60 
60 
60 
60 
60 
60 

1.5GHz 
2GHz 
3.5GHz 
4GHz 
1.5GHz 
2GHz 
3.5GHz 
4MHz 

2 
2 
2 
2 
4 
4 
4 
4 

B 400 Machines 50 
50 
50 
50 
50 
50 
50 
50 

1.5GHz 
2GHz 
3.5GHz 
4GHz 
1.5GHz 
2GHz 
3.5GHz 
4GHz 

2 
2 
2 
2 
4 
4 
4 
4 

D600 Machines 50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 

1.5GHz 
2GHz 
3.5GHz 
4GHz 
1.5GHz 
2GHz 
3.5GHz 
4GHz 
1.5GHz 
2GHz 
3.5GHz 
4GHz 

2 
2 
2 
2 
4 
4 
4 
4 
8 
8 
8 
8 
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2.6.2 Source of jobs to the system 
 

Jobs used for the experiment were downloaded 
from the Grid Workloads Archive designed by 
[31] to make traces of Grid workloads available 
to researchers and developers.  
 

2.7 Experimental Design 
 

Two experiments each were carried-out on a 
single processor system ad on a quadcore 
system.  
 

The first experiment executed the MinMin 
algorithm on a single processor system to 
schedule a range of (from 1000 jobs to 10000 
jobs in steps of 1000).  
 

The second experiment executed on a quadcore 
system. It used the MinMin algorithm to schedule 
a range of jobs from 1000 jobs to 10000 jobs in 
steps of 1000.  
 
The third experiment was executed on a single 
processor system. It used the random method to 
group machines then applied the 
size_proportional_to-speed method to group jobs 
before implementing the MinMin scheduling 
algorithm within the paired groups to schedule 
from 1000 jobs to 10000 jobs in steps of 1000. 
 

The fourth experiments also executed on a 
quadcore system; it used the random method to 
group machines then applied the proportionality 
method to group jobs before implementing the 
MinMin scheduling algorithm within the paired 
groups to schedule the same range of jobs as in 
the first experiment. 
 

In each of the four experiments, the number of 
groups used was varied between 2, 4 and 8 
groups, the number of threads used was varied 
between 1, 2, 4 and 8. For each of the 
combinations, the time taken to schedule was 
recorded. Time of scheduling is the time taken to 
schedule each set of jobs, that is the time taken 
to schedule 1000, 2000, 3000, 4000, 5000, 6000, 
7000, 8000, 9000, and 10000 jobs in turn by 
each thread cardinalities. This experiment is the 
same experiment used in [1]. 
 

2.8 System Properties 
 

The properties of the systems are as follows: 
 

1. SINGLE PROCESSOR SYSTEM:  
 

Processor: Intel(R) Pentium(R) 4 CPU 
3.00GHZ3.00GHz 

RAM:   1.50 GB 

Operating System: Windows XP Professional 
Version 2002 

 

2. QUADCORE: 
 

Processor: Intel(R) Core(TM) i7-4770 CPU @ 
3.40GHz  3.40 GHz 

RAM:  24.0GB 
System Type: 64-bit Operating System, x64-

based processor         
Operating System: Windows 8.1 

 

3. RESULTS AND DATA ANALYSIS 
 

This section discusses and compares result 
between the ordinary MinMin and the Group 
method. In the discussion, 1Thrds, 2Thrds, 
4Thrds or 8Thrds refer to the number of threads 
used in the experiment. SingleCPU or 
SingleProc,1CPU or 1Proc refer to result 
obtained on the single processor machine; 
Quadcore represent result obtained on the 
quadcore machine and 2Grp, 4Grp or 8Grp refer 
to the number of groups used. Also, SpdRnd 
refers to the method Size-Proportional-to-Speed. 
A combination of Threads, groups and machines 
are used in the analysis to denote results. For 
instance, 2ThrdsSingleCPU 2Grps represent 
result obtained using 2 threads and two groups 
on the single processor system. 
 

3.1 Performance of the Min Min Algorithm 
on the Single Processor and 
Quadcore Systems 

 

Table 5 and Fig. 1 show the results and 
performance of the ordinary MinMin on the two 
machines (single processor and quadcore).  
Using two threads, it took 1235755 Ms for the 
single processor and 136818Ms for the quadcore 
system to schedule the same range of jobs. The 
MinMin algorithm on the quadcore performed 
9.03 times or 88.93% better than MinMin 
executed on the Single processor system. This is 
an indication that the MinMin is also scalable as 
it gained from the underlying parallelism of the 
quadcore. Despite the MinMin algorithm 
benefitting from the underlying parallelism of the 
quadcore, we believe the gain is not significant 
enough not to use a method that enhances 
parallelism on quadcore. Analysis between the 
grouping method and the ordinary MinMin will 
reveal this. See section 5.2, 5.3 and 5.4. 
 

3.2 Analysis of Result on the Quadcore 
System 

  
This analysis is for result between the ordinary 
MinMin executed on the quadcore and group 
method executed on the quadcore machine. The 
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result is shown in Table 6 while Table 7 shows 
the computed improvement over the MinMin in 
multiples (X) and in percent (%). 
 
On the quadcore; using two groups, the group 
method performed better than the ordinary 
MinMin by 2 times or 50%. With four groups, the 
group method performed better than the MinMin 
by approximately 4 times which represents about 
75% and using eight groups, the group method 
performed better than the MinMin by 
approximately 7 times representing 86%. Fig. 2 
shows that on the quadcore, as the number of 
group increases, the performance of the group 
method over the ordinary MinMin also improves. 
It also shows that as the number of threads 

increases on the quadcore, the performance of 
the group method over the MinMin also 
improved. This is because more threads increase 
parallelism on the quadcore.  
 
From this, we can deduce that the group method 
expands the realm of parallelism as it increases 
scheduling throughput.  
 
On the improvement line in Fig. 2, a linear 
trendline was inserted and the linear equation 
was Y ≈ 2.4X – 0.5. This indicates that the 
improvement (Y) depends on the number of 
groups (X). Also, the R-Squared value of the 
trendline is 0.98 which indicates that the trendline 
fits perfectly to the improvement line.

  
Table 5. Result and performance of MinMin on a single processor and Quadcore systems 
 
Jobs Limit MinMin2Thrds (SingleCPU) MinMin2Thrds (QuadCore) 
1000 4500 399 
2000 17672 1795 
3000 40250 4222 
4000 66922 7188 
5000 90407 9994 
6000 116922 12700 
7000 154781 16690 
8000 196768 21719 
9000 244679 27989 
10000 302854 34122 
Total 1235755 136818 

Average 123575.5 13681.8 
Improvement over Single processor in multiple (X) 9.0321 
Improvement over Single processor in percent (%) 88.9284 

 

 
 

Fig. 1. Total of Min Min on different computer systems 
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Table 6. Result of MinMin on quadcore machine 
 
 One thread Two threads 
  SpdRnd Method  SpdRnd Method 
No of jobs  MinMin 2Grps 4Grps 8Grps MinMin 2Grps 4Grps 8Grps 
1000 452 192 120 81 403 189 111 78 
2000 1924 746 321 186 1775 759 337 196 
3000 4178 1683 738 384 4203 1543 648 396 
4000 7118 2889 1285 687 7431 2570 1297 671 
5000 10013 4093 2230 1082 9903 4339 1928 1178 
6000 12825 5921 3193 1522 12984 6433 3089 1568 
7000 16685 8408 3964 2465 16872 9079 4315 2361 
8000 21633 11298 5918 3447 21956 11261 5758 2855 
9000 27624 14667 6914 4396 27778 14340 7082 4506 
10000 34406 17414 8959 5405 34570 17385 10593 6379 

Total 136858 67311 33642 19655 137875 67898 35158 20188 
  Four threads 
  SpdRnd Method 
 MinMin 2Grps 4Grps 8Grps 
 399 193 104 83 
 1795 777 313 184 
 4222 1643 648 397 
 7188 2879 1309 667 
 9994 4149 1904 966 
 12700 6481 3183 1716 
 16690 8559 4529 2283 
 21719 10533 5606 2788 
 27989 14378 7048 4141 
 34122 17681 9935 4967 

Total 136818 
 

67273 
 

34579 
 

18192 
 

 
Table 7. Performance improvement on quadcore machine with increasing groups and threads 

 
 SpdRnd Method 
  Improvement  in Percent  (%) Improvement in Multiples (X) 
 Improvement  2Grps  4Grps  8Grps  2Grps  4Grps  8Grps 
1 1 Thread 50.81691 75.41832 85.6384 2.033219 4.06807 6.963012 
2 2 Threads 50.75394 74.50009 85.35775 2.030619 3.921583 6.829552 
3 4 Threads 50.83030 74.72628 86.7035 2.033773 3.956679 7.520778 
Aggr Improvement  50.80038 74.88156 85.89988 2.032537 3.98211 7.104448 

 

3.3 Combination of the Results 
 
This section combines and analyses the results 
on the single processor machine and on the 
quadcore machine. Table 8 shows the result and 
the computed improvements. We compared the 
best result of the MinMin (the one executed on 
the quadcore) to result of group method 
executed on the single processor and on 
quadcore.  
 
The MinMin executed on the quadcore 
performed better than the group method 
executed on the single processor by 4.41, 2.39 

and 1.50 times. This represents about 77%, 58% 
and 32% when using 2, 4 and 8 groups 
respectively. This is shown in the negative 
(falling) part of Fig. 3 (marked single processor).  
 
The group method executed on the quadcore 
system performed better than the MinMin 
executed on quadcore by 2.03, 3.92 and 6.81 
times representing 50%, 74% and 85% using 2, 
4, and 8 groups respectively. This is also shown 
in the rising part of Fig. 3 (marked quadcore).  
 
Within the single processor system, there was an 
average of 1.7 or 40% improvement between 
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successive groups. 4 group performed better 
than 2 group by 1.85 times or by 45%, 8 group 
performed better than 4 group by 1.6 times or by 
37% and 8 group performed better than 2 group 
by 2.95 times or by 57.40%. 
 

Within the quadcore system, there was an 
average of 1.8 times or 45% improvement 
between successive groups. 4 group performed 
better than 2 group by 1.93 times (48%), 8 group 
perform better than 4 group by 1.74 times (42%) 
and 8 group performed better than 2 group by 
3.36 times (70%).  
 

Between the Single processor and the quadcore, 
there was an average of 9 times or 85% 
corresponding improvement between the groups. 
Correspondingly, 2 groups on the quadcore 
performed better than 2 groups on the single 
processor by 8.9 times or 88%.  Four groups on 
the quadcore performed 9.36 times or 89% better 
than 4 groups on the single processor while 8 
groups on the quadcore performed 10.18 times 
or 90% better than 8 groups on the single 
processor system.  
 

A trendline fitted through the improvement line 
indicates a linear growth with equation: Y = 
0.492x + 1.7913.  
This equation indicates that improvement (Y) of 
the group method within a computing system can 
be determined by the number of groups (x).  
 

The R-Squared value of the trendline is 0.2174 
which indicates that the proportion of variance 
between improvement and the number of groups 
is low. This low fit is because of the use of  the 
group method on a single processor machine 

was compared against result of MinMin on 
quadcore machine (two different trends). 
However, this analysis shows that the MinMin is 
scalable on the quadcore but not as much as the 
group method on the same system.  
 
These analyses indicate that the group method 
performed better on the quadcore and is best 
suited for the multicore environment than the 
single processor system.  
 
The ordinary MinMin algorithm benefited 
marginally from the parallelism on the Quadcore. 
Hence it performed better than the grouping 
method executed on a single processor system 
where no parallelism was guaranteed.  
 
3.4 General Discussion on the Results 
 
From the result and analysis, it can be deduced 
that within a group, the performance is slightly 
impacted by differences in threads although this 
was very minimal and insignificant compared to 
the impact of groups on performance. Major 
performance improvements were achieved with 
groups across all platforms. 

 
The MinMin algorithm executed on the Quadcore 
system gained marginally from the underlying 
parallelism of the system hence it performed 
better than the grouping methods implemented 
on the single processor system. This was 
because the single processor system offered 
minimal parallelism only on the level of threads 
but not on the hardware which the group method 
targeted. 

 

 
 

Fig. 2. Performance of group method over MinMin with increasing groups and threads 
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Table 8. Combined result from single processor and Quadcore 
 

  Single Processor Quadcore 
  MinMin 2Grps 4Grps 8Grps  2Grps 4Grps 8Grps 
1000 403 2360 1094 594 189 111 78 
2000 1775 7907 3876 2031 759 337 196 
3000 4203 17031 9063 4360 1543 648 396 
4000 7431 28468 13656 9359 2570 1297 671 
5000 9903 40453 22672 12985 4339 1928 1178 
6000 12984 59781 32578 19062 6433 3089 1568 
7000 16872 79499 42047 26234 9079 4315 2361 
8000 21956 94781 54172 34453 11261 5758 2855 
9000 27778 119609 67438 41250 14340 7082 4506 
10000 34570 157970 82423 55282 17385 10593 6379 
Total  137875 607859 329019 205610 67898 35158 20188 
Average 13787.5 60785.9 32901.9 20561 6789.8 3515.8 2018.8 
Improvement (X) 4.41 2.40 1.50 2.03 3.92 6.83 
Improvement (%) 77 58 32 50 74 85 
Improvement Across Group(X), 
(%) 

8grp to 2 grp 
2.96, (57%) 

4grp to 2grp 
1.85,  (45%) 

8grp to 4grp 
1.6, (37%) 

8 grp to 2 grp 
3.36, (70%) 

4grp to 2 grp 
1.93, (48%) 

8 grp to 4grp 
1.74, (42%) 

Improvement quadcore vs single processor using corresponding groups 
(X), (%) 

 8.95, (88%) 9.36, (89%) 10.12, (90%) 
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Fig. 3. Aggregate performance 
 
On the quadcore, the group method performed 
far better than the ordinary MinMin. This is 
because the method exploited the advantages of 
the groups and the parallelism on the system, the 
improvement of the group method over the 
ordinary MinMin on the quadcore system range 
from 2 to 7 times depending on the number of 
groups used. 
 
Though all the machines are not timed at the 
same speed, we can deduce from the analysis 
that the grouping method expands the realm of 
parallelism as it increases scheduling throughput.  
 

4. RECOMMENDATIONS  
 
Haven realized that sequential algorithms do not 
fully optimize parallelism on parallel systems; to 
ensure that the computer Grid grows in tandem 
with advances made in computer hardware 
technology. We recommend that grid schedulers 
and applications be integrated with grouping 
methods to enhances parallelism and increase 
performance.   
 

5. CONCLUSION  
 
This work aimed at parallelising the scheduling of 
Grid jobs on a quadcore system using job and 
machine groups. The method executed on the 
quadcore system yielded significant improvement 

compared to the ordinary MinMin on the two 
platforms. Every major advance in computing 
technology comes with a paradigm shift in 
programming [32] the proliferation of multicore 
systems therefore calls for parallelisation of 
programming methods. Since not all algorithms 
are parallelisable; we propose the combine use 
of job grouping and machine grouping in the 
scheduling of Grid jobs. 

 
FUTURE THOUGHTS 
 
This research opens a new area of parallelisation 
of the scheduler by grouping independent jobs 
and machines. This work can be extended to 
other scheduling (both sequential and parallel). 
Though this work targeted independent jobs, the 
method can also be extended to dependent jobs. 
This will involve the same application of grouping 
but cooperating jobs maybe carefully selected to 
the same group, (and even if they are selected to 
different groups) they are scheduled to the same 
Grid site for processing – this will reduce the 
delay in process communication.   
 
Though different factors characterised the 
performance of a system, the overall result 
cannot be normalised or standardized. It will be 
interesting to experiment on a set of systems 
from the same family of CPU that shares same 
features. This will help standardize the result. 
 

y = 0.492x + 1.7913
R² = 0.2174
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Haven experiment this work on single processor 
system, duocore computer (Abraham and 
Osaisai 2021), and now a quadcore system, the 
next step will be to combine and analyse the 
results for all three platforms and present in a 
single paper. 
 
COMPETING INTERESTS 
 
Authors have declared that no competing 
interests exist. 

 
REFERENCES 
 
1. Abraham GT, Osaisai EF. Parallel 

scheduling of grid jobs on duo-core 
systems using grouping method. Covenant 
Journal of Informatics and Communication 
Technology, in Publica; 2021. 

2. Amdahl GM. Validity of the single 
processor approach to achieving large 
scale computing capabilities. AFIPS 
Conference Proceedings - 1967 Spring 
Joint Computer Conference, AFIPS 
1967;483–485.  
Available:https://doi.org/10.1145/1465482.
1465560 

3. Larus J. Spending Moore’s dividend. 
Communications of the ACM, 
2009;52(5):62–69. 
Available:https://doi.org/10.1145/1506409.
1506425 

4. Myhrvold, N. The next fifty years of 
software. ACM 97 Conference; 1997. 

5. Wang PH, Collins JD, Chinya GN, Jiang H, 
Tian X, Girkar M, Yang NY, Lueh GY, 
Wang H. EXOCHI: Architecture and 
programming environment for a 
heterogeneous multi-core multithreaded 
system. Proceedings of the ACM 
SIGPLAN Conference on Programming 
Language Design and Implementation 
(PLDI), 2007;156–166. 
Available:https://doi.org/10.1145/1250734.
1250753 

6. Schauer B. Discovery Guides Multicore 
Processors-A Necessity. In ProQuest 
discovery guides; 2008. 
Available:http://www.netrino.com/node/91 

7. Zhuravlev S, Saez JC, Blagodurov S, 
Fedorova A, Prieto M. Survey of 
scheduling techniques for addressing 
shared in multicore processors. ACM 
Reference Format. 2012;45(4). 
Available:https://doi.org/10.1145/2379776.
2379780 

8. Dongarra J, Mathieu F, Thomas H, 
Mathias J, Julien L, Yves R. Hierarchical 
QR factorization algorithms for multi-core 
clusters. Parallel Computing. 2013;39(4–
5):212–213. 

9. Jin H, Jespersen D, Mehrotra P, Biswas R, 
Huang L, Chapman B. High performance 
computing using MPI and OpenMP on 
multi-core parallel systems. Parallel 
Computing. 2011;37(9):562–575.  
Available:https://doi.org/10.1016/j.parco.20
11.02.002 

10. Mustafa B, Rafiya, S, Waseem A. Parallel 
Implementattion of Doolittle Algorithm 
using Open MP for multicore machines. 
2015 IEEE International Advance 
Computing Conference. 2015;575–578. 

11. Abraham GT, James A, Yaacob N. 
Priority-grouping method for parallel multi-
scheduling in Grid. Journal of Computer 
and System Sciences, 2015b;81(6):943–
957. 
Available:https://doi.org/10.1016/j.jcss.201
4.12.009 

12. Ernemann C, Hamscher V, 
Schwiegelshohn U, Yahyapour R, Streit A. 
On Advantages of Grid Computing for 
Parallel Job Scheduling. 2nd IEEE/ACM 
International Symposium on Cluster 
Computing and the Grid. 2002;339–39.  
Available:https://ieeexplore.ieee.org/abstra
ct/document/1540439/ 

13. Muthuvelu N, Liu J, Soe L, Venugopal S, 
Sulistio A, Buyya R. A dynamic job 
grouping-based scheduling for deploying 
applications with fine-grained tasks on 
global grids. Australian Workshop on Grid 
Computing and E-Research, 2005;41–48. 
Available:https://dl.acm.org/citation.cfm?id
=1082297 

14. Selvi S, Thamarai M, Sheeba, santha K, 
Prabavathi, K, Kannan G. Estimating job 
execution time and handling missing job 
requirements using rough set in grid 
scheduling. International Conference on 
Computer Design and Applications. 
2010;295–301. 
Available:https://ieeexplore.ieee.org/abstra
ct/document/5541135/ 

15. Soni VK, Sharma R, Mishra Manoj K. 
Grouping-based job scheduling model in 
grid computing. In World Academy of 
Science, Engineering and 
Technology.2010;41. 
Available:http://citeseerx.ist.psu.edu/viewd
oc/download?doi=10.1.1.294.2467&rep=re
p1&type=pdf 



 
 
 
 

Abraham et al.; AJRCOS, 8(4): 21-34, 2021; Article no.AJRCOS.67791 
 
 

 
33 

 

16. Sharma R, Soni VK, Mishra MK, Bhuyan 
P, Utpal CD. An agent based dynamic 
resource scheduling model with FCFS-job 
grouping strategy in grid computing. Waset 
ICCGCS; 2010.  
Available:https://www.academia.edu/downl
oad/5302242/v64-86.pdf 

17. Mon TZ, Cho MM. MIPS group job 
scheduling model for deploying 
applications. International Conference on 
Advances in Engineering and Technology 
(ICAET). 2014;1234–1245.  
Available:https://doi.org/10.15242/IIE.E031
4069 

18. Pinel F, Dorronsoro B, Bouvry P. Solving 
very large instances of the scheduling of 
independent tasks problem on the GPU. 
Journal of Parallel and Distributed 
Computing Parallel Distributed Computing. 
2012;73(1):101–110.  
Available:https://doi.org/10.1016/j.jpdc.201
2.02.018 

19. Wan L, Li K, Liu J, Li K. GPU 
implementation of a parallel two-list 
algorithm for the subset-sum problem. 
Concurrency and Computation: Practice 
and Experience. 2015;27(1):119–145. 

20. Cuomo S, De Michele P, Di Nardo E, 
Marcellino L. Parallel implementation of a 
machine learning algorithm on GPU. 
Journal of Parallel Programming. 
2018;46(5):923–942. 

21. Abraham GT, James A, Yaacob N. Group-
based Parallel Multi-scheduler for Grid 
computing. Future Generation Computer 
Systems. 2015a;50:140–153. 
Available:https://doi.org/10.1016/j.future.20
15.01.012 

22. Abraham GT. Group-based parallel multi-
scheduling methods for grid computing. 
Coventry University; 2016. 

23. Ibarra OH, Kim CE. Heuristic algorithms 
for scheduling independent tasks on 
nonidentical processors. Journal of the 
ACM. 1977;24(2):280–289. 
Available:https://dl.acm.org/doi/abs/10.114
5/322003.322011 

24. Canabe M, Nesmachnow S. Parallel 
implementations of the MinMin 
heterogeneous computing scheduler in 
GPU. CLEI Electronic Journal. 
2012;15(3):8–8. 
Available:http://www.scielo.edu.uy/scielo.p
hp?pid=S0717-
50002012000300009&script=sci_arttext&tl
ng=pt 

25. Etminani K, Naghibzadeh M. A min-min 
max-min selective algorihtm for grid task 
scheduling. In 2007 3rd IEEE/IFIP 
International Conference in Central Asia 
on Internet, 2007;1–7. 

Available:https://ieeexplore.ieee.org/abstra
ct/document/4401694/ 

26. Freund RF, Gherrity M, Ambrosius S, 
Campbell M, Halderman M, Hensgen D, 
Siegel HJ. Scheduling resources in multi-
user, heterogeneous, computing 
environments with SmartNet. In 
Proceedings Seventh Heterogeneous 
Computing Workshop IEEE(HCW 98). 
1998;184–199.  

Available:https://ieeexplore.ieee.org/abstra
ct/document/666558/ 

27. Lavanya M, Shanthi B, Saravanan S. Multi 
objective task scheduling algorithm based 
on SLA and processing time suitable for 
cloud environment. Computer 
Communications. 2020;151:183–                  
195.  

Available:https://www.sciencedirect.com/sc
ience/article/pii/S014036641930492X 

28. Maheswaran M, Ali S, Siegel H, Hensgen 
D, Freund RF. Dynamic mapping of a class 
of independent tasks onto heterogeneous 
computing systems. Journal of Parallel and 
Distributed Computing. 1999;59(2):107–
131. 

Available:https://www.sciencedirect.com/sc
ience/article/pii/S0743731599915812 

29. Mishra SK, Sahoo B. Load balancing in 
cloud computing: A big picture. Journal of 
King Saud University - Computer and 
Information Sciences. 2020;32(2):149–
158. 

Available:https://www.sciencedirect.com/sc
ience/article/pii/S1319157817303361 

30. Zhou Z, Li F, Zhu H, Xie H, Jemal HA, 
Morshed UC. An improved genetic 
algorithm using greedy strategy toward 
task scheduling optimization in cloud 
environments. Neural Computing and 
Applications, 2020;32(6):1531–                   
1541. 

Available:https://link.springer.com/article/1
0.1007/s00521-019-04119-7 

31. Iosup A, Li H, Jan M, Anoep S, Dumitrescu 
C, Wolters L, Epema DHJ. The Grid 
Workloads Archive. Future Generation 
Computer Systems. 2008;24:672–                
686. 



 
 
 
 

Abraham et al.; AJRCOS, 8(4): 21-34, 2021; Article no.AJRCOS.67791 
 
 

 
34 

 

Available:https://doi.org/10.1016/j.future.20
08.02.00Bell G.  

32. Bell’s law for the birth and death of 
computer classes: A theory of the 

computer’s evolution. IEEE Solid-State 
Circuits Society Newsletter. 2008;13             
(4):8–19.

_________________________________________________________________________________ 
© 2021 Abraham et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

 
 

 

 

Peer-review history: 
The peer review history for this paper can be accessed here: 

http://www.sdiarticle4.com/review-history/67791 


