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Particle Motion and Chaos
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In this note, we consider particle falling in the black hole with an additional potential. Following the proposal by Susskind (2018),
we study the growth rate of the particle’s Rindler momentum, which corresponds to the growth rate of the operator size in the dual
chaotic system. A general analysis near the horizon shows that the growth rate of the particle’s Rindler momentum of the particle
falling with a regular potential is the same as that of the particle free falling, which saturates the chaos bound. However, when the
potential is singular, the growth rate is suppressed such that it is below the Lyapunov exponent. It implies that the chaos
suppression may be captured by an additional singular potential in the gravity side. We further explicitly study a particle falling
in hyperscaling violating spacetime to confirm the general analysis results. Finally, we study the particle falling in AdS soliton
geometry. It also exhibits a suppression of the growth of the Rindler momentum. It is attributed to that when the repulsive
potential is introduced or the black hole horizon is absent, the particle is slowed down, and its trajectory seen by a comoving
observer is timelike, which corresponds to a weak chaos system.

1. Introduction

In [1], Susskind proposes that there is a correspondence
between the operator growth in the chaotic quantum sys-
tems and the momentum of the particle falling toward
the black hole. In particular, they grow exponentially with
the same Lyapunov exponent. For the AdS black hole, the
particle’s momentum grows at a maximal rate [1] and the
Lyapunov exponent saturates the chaos bound proposed in
[2]. It is a universal property because all the horizons are
locally Rindler-like. The same characteristic is also found
in the strongly coupling chaotic quantum system, SYK
model. References [3, 4] further study the particle falling
toward charged black holes and confirm the Susskin
proposal.

In this note, we study the growth of the particle momen-
tum in an external potential. In particular, we want to explore
under what condition we can have a holographic dual for
which the Lyapunov exponent is below the chaos bound.

Such potential can provide a platform for us to study a real-
istic quantum chaos system from the gravity side.

From the near-horizon analysis, it can be seen that a
regular potential leads to the same conclusion as that of a
vanishing potential. In such case, the Rindler momentum
exhibits a Lyapunov exponent growth. The novel phenom-
enon appears when the potential is singular near the hori-
zon that the momentum growth is suppressed. According
to the duality by Susskind, it implies a chaos suppression
and it is below the Lyapunov bound. Therefore, the singular
potential may capture some mechanics of the chaotic sys-
tem. Following this clue, we further explicitly study the par-
ticle falling in hyperscaling violating (HV) black brane
geometry. By this simple example, we explicitly illuminate
that the velocity bound in the gravity set the chaos bound
in the quantum system. When the free falling particle
travels with the light speed near the horizon (Here, we
mean that the particle nearly follows a null trajectory
according to the comoving observer. It shall be explicitly
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illuminated in Section 5.), the Lyapunov exponent saturates
the chaos bound. If we add some repulsive potential, which
results in the velocity of the particle being less than the
light velocity, the exponent of the growth of the momen-
tum will not saturate the bound. In this case, chaos is
suppressed.

We also study the particle falling in AdS soliton geometry
[5, 6]. The holographic superconducting models have been
built based on AdS soliton geometry [7, 8]. Since the horizon
is absent, the growth of the particle’s momentum in AdS
soliton geometry is different from that in the black hole
background.

2. Particle Motion and Its Rindler Momentum

Let us consider a particle with massm and an external poten-
tial V moving in d + 1 spacetime dimensions. It is convenient
to set the metric as

ds2 = gtt rð Þdt2 + grr rð Þdr2+⋯ = −a rð Þf rð Þdt2 + dr2

b rð Þf rð Þ+⋯,

ð1Þ

where f ðrÞ vanishes at the horizon r+. aðrÞ and bðrÞ are two
positive functions of r, which is regular at r+. The boundary
is located at r = 0. The action of the particle is

Sp = −m
ð
1 +V Xð Þð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν _X

μ _Xν
q

dτ, ð2Þ

where τ is the arbitrary parameter of the particle world line
and the dot denotes the derivative with respect to τ. Xμ is
the spacetime coordinates. VðXÞ is the external potential.
From the above action, we derive the equation of motion
(EOM) as (In the nonrelativistic limit, choosing τ = t, we
have _X

μ~1/c, μ = 1, 2, 3, V~1/c2. Thus, _V _X
μ~1/c3 can be

neglected and η ≈ 1, 1 + V ≈ 1. Therefore, the EOM (3)
reduces to the usual Newton law, F =m€x = −∇V , which is
expected.)

€X
μ + Γ

μ
αβ

_X
α _X

β −
_η _X

μ

2η +
_V _X

μ + ηgμν∂νV
1 +V

= 0, ð3Þ

η ≡ −gαβ
_X
α _X

β > 0: ð4Þ

Here, we only assume the timelike condition that η > 0.
We would like to point out that η is not a constant in general
because τ is an arbitrary parameter of the particle world line.
Only when τ is the affine parameter, η = 1. And then, we
obtain the canonical momentum:

pμ =
δSp
δ _X

μ =
m 1 +V Xð Þð Þgμν

_X
νffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gαβ _X
α _Xβ

q : ð5Þ

To proceed, we choose the static gauge τ = t and take
the ansatz r = rðtÞ and x, y = const: in what follows. In
addition, we assume that the potential only depends on r,

i.e., V =VðrÞ. And then, Equations (3), (4), and (5) reduce
to

_r =
ffiffiffiffiffi
ab

p
f 1 − af

1 +Vð Þ2
A2

 !1/2

, ð6Þ

η = 1 +Vð Þ2a2 f 2
A2 , ð7Þ

pr =
mAffiffiffiffiffi
ab

p
f

1 − af
1 +Vð Þ2
A2

 !1/2

= mA
ab

_r

f 2
, ð8Þ

where A > 0 is the integral constant. To have a solution, the
increase in the potential V should be slow enough such that
af ð1 +VÞ2 < A2.

According to Susskind’s proposal [1], particle falling in
the black hole corresponds to chaotic system’s evolution.
Explicitly, the growth of the Rindler momentum of the
falling particle is dual to the growth of the operator size
of the chaotic system. Thus, we shall focus on the Rindler
momentum pρ which relates to the radial momentum
(near horizon) as

pρ~
ffiffiffi
f

p
pr~

_r

abf 3/2
: ð9Þ

Before analyzing the specific case, we first calculate the
behavior of the Rindler momentum near the horizon. Near
the horizon, the functions f , a, b are expressed approxi-
mately as

f rð Þ ≈ f ′ r+ð Þ r − r+ð Þ = 4πTffiffiffiffiffiffiffiffiffiffi
a+b+

p r+ − rð Þ,

a rð Þ ≈ a r+ð Þ ≡ a+,
b rð Þ ≈ b r+ð Þ ≡ b+:

ð10Þ

In the above expressions, T is the Hawking tempera-
ture, which is

T = −
ffiffiffiffiffiffiffiffiffiffi
a+b+

p
f ′ r+ð Þ

4π : ð11Þ

Then, the particle motion (6) and the Rindler momen-
tum (9) behave as

_r ≈ 4πT r+ − rð Þ 1 − 4πT r+ − rð Þ
ffiffiffiffiffi
a+
b+

r 1 + Vð Þ2
A2

 !1/2

, ð12Þ

pρ~ r+ − rð Þ−3/2 _r, ð13Þ
where we neglect some coefficients in the pρ expression
which is irrelevant to its growth rate. We are particu-
larly interested in two cases: VðrÞ is regular and singular
at r+.
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When VðrÞ vanishes or is regular at the horizon, i.e.,
Vðr+Þ <∞, as r⟶ r+, the particle motion is dominated
by

_r ≈ 4πT r+ − rð Þ⟹ r+ − r = e−4πTt: ð14Þ

Then, we obtain the growth of the Rindler momentum
(13):

pρ ~ e2πTt|fflfflfflfflffl{zfflfflfflfflffl}
Rindlermomentumgrowth

⟶
dual

eλt|{z}
chaoticoperatorsizegrowth

: ð15Þ

According to the duality, we find that the growth of
the operator size saturates the Lyapunov exponent λ =
λL = 2π/β, β = 1/T , which restores Susskind’s results.

When VðrÞ is singular, however, the Rindler momentum
growth may be suppressed, which corresponds to a suppres-
sion of the chaos. Consider a simple kind of singular poten-
tial VðrÞ behaving as VðrÞ = 1/ ffiffiffiffiffiffiffiffiffiffiffi

r+ − r
p

near the horizon,
then the particle motion (12) becomes

_r ≈ 4πT r+ − rð Þγ, γ ≡ 1 − 4πT
A2

ffiffiffiffiffi
a+
b+

r� �1/2
< 1: ð16Þ

The solution of the above EOM is r+ − r = e−γ4πT , which
leads to pρ growing as

pρ~eγ2πTt|fflfflfflfflffl{zfflfflfflfflffl}
Rindlermomentumgrowth

⟶
dual

eλt|{z}
chaoticoperatorsizegrowth

: ð17Þ

It means the growth of the operator size λ = γλL < λL;
namely, the chaos is suppressed.

From the above analysis of the particle motion near the
horizon and the chaos, we find that a singular potential
may capture some mechanics of the chaos suppression based
on the duality between particle motion and operator size. In
the following sections, we further confirm the above picture
in the explicit gravity background.

3. Particle Falling in the Hyperscaling Violating
Black Brane

3.1. Particle Free Falling. In this section, we study the particle
falling in 4-dimensional neutral HV black brane geometry,
which takes the form [9, 10]

ds2 = rθ
−f rð Þ
r2z

dt2 + dr2

f rð Þr2 + dx2 + dy2

r2

� �
,

f rð Þ = 1 − r
r+

� �2+z−θ
, θ ≠ 2,

f rð Þ = r2z−2 1 − r
r+

� �2−z
 !

, θ = 2:

8>>>><
>>>>:

ð18Þ

The horizon of the black brane is located at r+, and
the boundary is at r⟶ 0. z and θ are the Lifshitz
dynamical exponent and hyperscaling violating exponent,
respectively. The constraints from the null energy condi-
tion give

2 − θð Þ 2 z − 1ð Þ − θð Þ ≥ 0,
z − 1ð Þ 2 + z − θð Þ ≥ 0:

ð19Þ

The Hawking temperature is given by

T = −
r2−2z+
4π f ′ z+ð Þ =

2 + z − θ

4πrz+
, θ ≠ 2,

2 − z
4πr+

, θ = 2:

8>>><
>>>: ð20Þ

We firstly study the particle free falling in the HV
black brane by setting the potential VðrÞ = 0. The particle
motion (6) and its Rindler momentum (9) now reduce to

_r = f
A
rθ/2−2z+1 A2r2z−θ − f

� �1/2
, ð21Þ

pρ~
r2z−2

f 3/2
_r: ð22Þ

For the special case θ = 2 and z < 2, Equation (21) can
be solved analytically, and then, we can obtain the analyt-
ical expression of pρ, which reads

pρ tð Þ = sinh 2 − z
2 t

� �
, ð23Þ

where we have taken r+ = A = 1 for simple. It is easy to
find that at the late times the Rindler momentum
exhibits Lyapunov exponential growth λ = 2π/β.

For general θ and z, it is hard to obtain the analytic
solutions of Equation (21) and we resort to the numerical
method instead. Figure 1 shows the momentum time
dependence pρðtÞ for different hyperscaling and Lifshitz
parameters θ and z.

The exponential growth of the Rindler momentum at
late time is obvious. The growth rate can be worked out
by locating the slope of ln pρðtÞ. The results are exhibited
in the third line in Table 1. Comparing with the Lyapunov
exponent λL (the second line in Table 1), we conclude that
particle falls in the HV black hole fastest when the poten-
tial vanishes. It corresponds to the bound of the chaotic
operator size.

In summary, for the free falling particle, the momen-
tum grows as pρ~e2πTt , which is independent of the
hyperscaling and Lifshitz parameters θ and z. It coincides
with the analysis in Section 2 where the potential vanishes
near the horizon.
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3.2. Particle Falling with Repulsive Potential.Now, we turn on
the potential V . Then, Equations (6), (7), (8), and (9) in the
HV background become

_r = r1−z f 1 − rθ−2z f 1 +Vð Þ2
A2

 !1/2

,

pρ~mA
rz−1ffiffiffi

f
p 1 − rθ−2z f 1 +Vð Þ2

A2

 !1/2

:

ð24Þ

Inspired by the conclusion in Section 2 when the
potential VðrÞ is singular, the growth of the Rindler
momentum pρðtÞ may be suppressed which is dual to
the chaos suppression. To check this point, we choose
the form of the potential as

V rð Þ =
ffiffiffi
1
f

s
− 1, ð25Þ

which vanishes at the boundary and is singular at the
horizon. Then, (24) becomes

_r = r1−z f 1 − rθ−2z

A2

� �1/2
, ð26Þ

pρ~
rz−1ffiffiffi

f
p 1 − rθ−2z

A2

� �1/2
: ð27Þ

Solving Equation (26) numerically, we show the
growth of pρ for different θ and z in Figure 2. Although
pρ still grows exponentially, the slope of ln pρ shown in
the fourth line of Table 1 manifests a suppression of the
growth rate, lower than the bound λL = 2πT . Thus, a sin-
gular potential like (25) may correspond to the chaos sup-
pression which is below the chaos bound.

4. Particle Falling in the AdS
Soliton Background

In this section, we turn to consider the free particle falling in
5-dimensional AdS soliton geometry [5–8], and the metric is
given by

ds2 = 1
r2

dr2

f rð Þ − dt2 + dx2 + dy2 + f rð Þdχ2
� �

,

f rð Þ = 1 − r4

r4+
,

ð28Þ

where r+ is the tip of this geometry. To avoid a conical singu-
larity at the tip, we must impose a period of χ~χ + ðπ/r+Þ. We
can make a double Wick rotation of the AdS Schwarzschild
black brane to obtain the geometry (28).

Taking the ansatz r = rðτÞ, x = y = χ = const: with the
static gauge τ = t and using Equations (3) and (4) with zero
potential, we can obtain the free particle motion in AdS
soliton:

dr
dt

= f −
f

A2r2

� �1/2
: ð29Þ

The Rindler momentum pρðtÞ (9) reduces to

pρ = Am

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

A2r2

r
: ð30Þ

We numerically solve Equation (29) and obtain the
momentum time dependence pρðtÞ (Figure 3). Since the hori-
zon is absent in the AdS soliton background, the chaos is sup-
pressed. Therefore, the growth of the particle’s momentum in
AdS soliton geometry is different from that in the black hole
background. More detailed explorations deserve further
studying.

5. Conclusions and Discussions

In this note, we study particle falling in the black hole with an
external potential. By a general analysis near the horizon, we
show that the growth rate of the particle’s Rindler momen-
tum of the particle falling with a regular potential is the same
as that of the particle free falling, which saturates the chaos
bound. However, when the potential is singular, the growth
rate is suppressed such that it is below the Lyapunov expo-
nent. It means that the chaos suppression may be captured
by such external singular potential in the gravity side.

Further, we explicitly study the momentum growth of a
particle when it falls in the HV black brane and the soliton
background. For the HV case, when the particle free falls
toward the black brane, the momentum always grows expo-
nentially, independent of the Lifshitz and HV exponents.
The exponent growth rate 2πT can be explained by the cor-
respondence between the light speed in gravity and the chaos
bound in quantum complexity.
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𝜃 = 2, z = 1.5

Figure 1: The time dependence of the Rindler momentum pρðtÞ for
different hyperscaling and Lifshitz parameters θ and z. We setm = 1,
A = 10, and rð0Þ = 0:5 to solve Equation (21) of the particle.
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However, after a repulsive potential is introduced, the
exponent of the growth of the momentum may not saturate
the bound, since the falling particle is slowed down and can-
not achieve the light speed. The similar situation happens
when the free particle falls in the soliton background. With-
out a horizon, the light speed is also hard to achieve, and
then, no exponent growth appears. In a dual manner, we
can say that the chaos of the quantum system is suppressed.

Our results explicitly illuminate that the velocity bound
in the gravity corresponds to the chaos bound in the quan-
tum system. To have a good understanding on this point, it

is helpful to specify the line element of the particle trajectory
seen by a comoving observer. Namely, we choose parameter
λ that dt/dλ =

ffiffiffiffiffiffiffiffiffi
−gtt

p
and express the line element as

l2 λð Þ = gαβ
dXα

dλ
dXβ

dλ
= −1 + grr

dr
dλ

� �2
+⋯ = 1 + Vð Þ2gtt

A2 :

ð31Þ

When l2ðλÞ⟶ 0, we say that the particle travels with
a light speed to the comoving observer. Then, for a free
particle falling near the black hole horizon, its speed
approaches the light speed as gtt ⟶ 0. When a repulsive
potential V~1/ ffiffiffiffiffiffiffiffiffi−gtt

p
(as in (25)) is introduced or the

black hole horizon is absent, which results in gtt ≠ 0, l2ðλÞ
is finite and so the growth rate cannot reach the chaos bound
anymore.

Summing up, a repulsive potential or the soliton geome-
try can provide a platform for us to holographically study the
realistic quantum chaos system. But until now, we cannot
explicitly give which specific quantum system is dual to our
gravity model. It is also the difficulties that holography needs
to work out. But at least, our study can provide us clues and
insights into the realistic quantum chaos system. In particu-
lar, we hope to give some universal properties of the holo-
graphic dual theory and explore the basic principle behind
these phenomena observed in our gravity side. In the future,
we will further pursue these problems. The first step is to give
a holographic effective field theory, for which the Lyapunov
exponent of the dual theory is suppressed.
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Table 1: The chaos bound λL and the Lyapunov exponent λ of the particle free falling and that with repulsive potential for different
hyperscaling violation and Lifshitz exponents.

θ = 0, z = 1 θ = 0, z = 1:5 θ = 0, z = 2 θ = 1, z = 1:5 θ = 2, z = 1:5
λL = 2πT 1.5 1.75 2 1.25 0.25

λ (regular V rð Þ) 1.49 1.75 2.00 1.25 0.25

λ (singular V rð Þ) 1.25 1.45 1.43 1.13 0.24
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Figure 2: The time dependence of the Rindler momentum pρðtÞ for
different hyperscaling and Lifshitz parameters θ and z. We setm = 1,
A = 10, and rð0Þ = 0:5 to solve Equations (26).
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Figure 3: The radial momentum time dependence pρðtÞ in the
AdS soliton background. We set m = 1 and rð0Þ = 0:1 to solve
the EOM (29).
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