
World Journal of Mechanics, 2013, 3, 1-25 
doi:10.4236/wjm.2013.31001 Published Online February 2013 (http://www.scirp.org/journal/wjm) 

Free-Form Laminated Doubly-Curved Shells and Panels of 
Revolution Resting on Winkler-Pasternak Elastic 

Foundations: A 2-D GDQ Solution for Static and Free 
Vibration Analysis 

Francesco Tornabene1*, Alessandro Ceruti2 
1DICAM Department, School of Engineering, University of Bologna, Bologna, Italy 

2DIN Department, School of Engineering, University of Bologna, Bologna, Italy 
Email: *francesco.tornabene@unibo.it, alessandro.ceruti@unibo.it 

 
Received November 18, 2012; revised December 19, 2012; accepted December 28, 2012 

ABSTRACT 

This work presents the static and dynamic analyses of laminated doubly-curved shells and panels of revolution resting 
on Winkler-Pasternak elastic foundations using the Generalized Differential Quadrature (GDQ) method. The analyses 
are worked out considering the First-order Shear Deformation Theory (FSDT) for the above mentioned moderately 
thick structural elements. The effect of the shell curvatures is included from the beginning of the theory formulation in 
the kinematic model. The solutions are given in terms of generalized displacement components of points lying on the 
middle surface of the shell. Simple Rational Bézier curves are used to define the meridian curve of the revolution struc- 
tures. The discretization of the system by means of the GDQ technique leads to a standard linear problem for the static 
analysis and to a standard linear eigenvalue problem for the dynamic analysis. Comparisons between the present for- 
mulation and the Reissner-Mindlin theory are presented. Furthermore, GDQ results are compared with those obtained 
by using commercial programs. Very good agreement is observed. Finally, new results are presented in order to inves- 
tigate the effects of the Winkler modulus, the Pasternak modulus and the inertia of the elastic foundation on the behav- 
ior of laminated shells of revolution. 
 
Keywords: Doubly-Curved Shells of Revolution; Rational Bézier Curves; Laminated Composite Shells; 

Winkler-Pasternak Foundation; First-Order Shear Deformation Theory; Generalized Differential Quadrature 
Method 

1. Introduction 

During the last sixty years, two-dimensional linear theo- 
ries of thin shells have been developed including impor- 
tant contributions by Timoshenko and Woinowsky-Krie- 
ger [1], Flügge [2], Gol’denveizer [3], Novozhilov [4], 
Vlasov [5], Ambartusumyan [6], Kraus [7], Leissa [8,9], 
Markuš [10], Ventsel and Krauthammer [11] and Soedel 
[12]. All these contributions are based on the Kirchhoff- 
Love assumptions. The transverse shear deformation has 
been incorporated into shell theories by following the 
theory of Reissner-Mindlin [13], also named First-order 
Shear Deformation Theory (FSDT). Abandoning the as- 
sumption related to the preservation of the normals to the 
shell middle surface after the deformation, a comprehen- 
sive analysis for elastic isotropic shells was made by 
Kraus [7], Gould [14,15] and Qatu [16,17]. The present 
work is just based on the FSDT. In order to include the  

effect of the initial curvature in the evaluation of the 
stress resultants a generalization of the Reissner-Mindlin 
(RM) theory has been proposed in literature by Kraus [7], 
Qatu [16,17] and Toorani and Lakis [18,19]. There are 
three different ways to evaluate the engineering elastic 
constants in the study of curved shells. The first is the 
Reissner-Mindlin approach [7] that consists in neglecting 
the effect of curvatures. Using this approach the engi- 
neering elastic stiffnesses are constant and do not depend 
on curvatures. The second one, proposed by Kraus [7] 
and Toorani and Lakis [18], is based on the Taylor ex- 
pansion, while the third one proposed by Qatu [16] con- 
sists in the exact integration of the elastic constants. As a 
consequence of the use of these considerations, the stress 
resultants directly depend on the geometry of the struc- 
ture in terms of the curvature coefficients. In this latter 
case, the hypothesis of the symmetry of the in-plane 
shearing force resultants and the torsional couples de-  *Corresponding author. 
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clines. A further improvement of the previous theories of 
shells has been proposed by Toorani and Lakis [19]. In 
the present work their kinematic model is used in order 
to include the effect of the curvature from the beginning 
of the shell formulation. In this way, the strain relation- 
ships have to change and, as a consequence, the equilib- 
rium equations in terms of displacements have to be mo- 
dified. In the present paper, the proposed shell theory, 
named General Shell Theory (GST), is considered and 
compared with the Reissner-Mindlin (RM) theory. 
Comparisons between these two different formulations 
are presented in this paper. Several studies dealing with 
the shells theory have been presented years before. The 
most popular numerical tool used to perform the static 
and dynamic analyses is currently the finite element me- 
thod [14,15,20]. The generalized collocation method 
based on the ring element method has also been applied. 
In this method, each static and kinematic variable is 
transformed into a theoretically infinite Fourier series of 
harmonic components, with respect to the circumfer- 
ential co-ordinate [21,22]. In other words, when dealing 
with a completely closed shell, the 2D problem can be 
reduced using standard Fourier decomposition. For a 
panel, however, it is not possible to perform such a re- 
duction operation, and the two dimensional field must be 
directly dealt, as it will just be done in the present work. 
Furthermore, the system of second-order linear partial 
differential equations is solved, without resorting to the 
one-dimensional formulation of the equilibrium of the 
shell. Complete revolution shells are obtained as special 
cases of shell panels by satisfying the kinematical and 
physical compatibility at the common meridian with 

0, 2π  . The excellent mathematical and computa- 
tional algorithmic properties, combined with successful 
industrial applications, have contributed to the enormous 
popularity of the Rational Bézier and Non-Uniform Ra- 
tional B-Splines (NURBS) curves [23-25]. These curves 
allow to generalize the shape of the shell meridian and 
can be used for the optimization of the structure itself. By 
introducing the Differential Quadrature rule [26] and the 
simple mathematical formulation of the Rational Bézier 
and NURBS curves [23-25], it is possible to numerically 
evaluate the geometric parameters of a free-form shell of 
revolution. For the sake of simplicity and without loosing 
generality, only Rational Bézier curves are used in this 
study. Due to the increasing importance of the interaction 
of shells with the elastic medium, the Winkler-Pasternak 
foundation is introduced. Differently from papers pre- 
sented in literature [27-31], all the effects of the founda- 
tion, except the damping, are separately considered. New 
results are presented in order to investigate the effects of 
the Winkler modulus, the Pasternak modulus and the 
inertia of the elastic foundation on the behavior of lami- 
nated shells of revolution. The mathematical fundamen-  

tals and recent developments of the GDQ method as well 
as its major applications in engineering are discussed in 
detail in the book by Shu [26]. The interest of researches 
in this procedure is increasing due to its great simplicity 
and versatility. As shown in the literature [32], GDQ 
technique is a global method which can obtain very ac- 
curate numerical results by using a considerably small 
number of grid points. Therefore, this simple direct pro- 
cedure has been applied in a large number of cases [33- 
85] to circumvent the difficulties of programming com- 
plex algorithms for the computer, as well as to reduce the 
computational time. In conclusion, the aim of the present 
paper is to demonstrate an efficient and accurate applica- 
tion of the Differential Quadrature approach, by solving 
the equations governing the static and the free vibration 
of laminated composite doubly-curved moderately thick 
shells and panels of revolution. Summarizing, this re- 
search deals with four aspects. The first is the improve- 
ment of the Reissner-Mindlin Theory using a different 
kinematical model. In this way the effect of the curvature 
of the shell structure is considered from the beginning of 
the theory derivation. The second is the generalization of 
the shape of the shell meridian. The Differential Quadra- 
ture rule is used to evaluate the geometric parameters 
needed to describe the geometry of the structure when a 
Rational Bézier meridian curve is assumed. The third is 
the investigation of the effects of Winkler-Pasternak foun- 
dations on the behavior of the shell structures in static 
and dynamic analyses. All the effects of the foundation 
are separately considered. The fourth is the use of the 
Generalized Differential Quadrature method to solve the 
governing shell equations. 

2. Shell Fundamental Equations 

The basic configuration of the problem herein considered 
is a laminated composite doubly-curved shell [83] as 
shown in Figure 1. The co-ordinates along the meridian 
and circumferential directions of the reference surface 
are   and s , respectively. The distance of each point 
from the shell mid-surface along the normal is  . It is 
considered a laminated composite shell made of  la- 
minae or plies, where the total thickness of the shell  
is defined as: 

l
h

1

l

k
k

h h


                     (1) 

in which 1k k kh   

3

 is the thickness of the k-th lam- 
ina or ply. In this work, doubly-curved shells of revolu- 
tion are considered. For this type of structures the ana- 
lytical expressions of the meridian curve are reported in 
the work by Tornabene [78], so that no further considera- 
tions will be introduced. The angle formed by the ex- 
tended normal n to the reference surface and the axis of 
rotation x , or the geometric axis 3x  of the meridian 
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from the reference surface  2h h  curve, is defined as the meridian angle  ; the angle 
between the radius of the parallel circle 0R   and the 

1x  axis is designated as the circumferential angle  , as 
shown in Figure 2. 

2 . The ge- 
ometry of shells considered [83] is a surface of revolu- 
tion (Figure 2). 

A simple way to define a general meridian curve is to 
use the well-known Rational Bézier representation of a 
plane curve [24,25,80]. In particular, it is possible to de- 
scribe a Rational Bézier curve in the following manner: 

 sFor these structures the parametric co-ordinates ,  
define, respectively, the meridian curves and the parallel 
circles upon the middle surface of the shell. The curvi- 
linear abscissa  s   of a generic parallel is related to 
the circumferential angle   by the relation 0      

     

1 , 1 ,
0 0

3 , 3 ,
0 0

n n

i n i i i n i
i i

n n

i n i i i n i
i i

x u B u w x B u w

x u B u w x B u w

 

 



 

 

 




      (2) 

s R . 
The horizontal radius 0  R   of a generic parallel of the 
shell represents the distance of each point from the axis 
of revolution 3x . b  is the shift of the geometric axis 
of the curved meridian 3

R
x  with reference to the axis of 

revolution 3x . The position of an arbitrary point within 
the shell material is defined by co-ordinates  
 0 1

where  0,1u  is the curve parameter, i  are the 
weight coefficients and 

w
 1 3,i ix x  are the co-ordinates of 

the curve control points. Furthermore, the classical n-th 
degree Bernstein polynomial formulations are given by: 

    ,  00s s s   upon the middle surface, 
and   directed along the outward normal and measured  
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Figure 1. Co-ordinate system of a laminated composite doubly-curved shell. 
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Figure 2. Shell geometry: Meridian section (a); Circumferential section (b).  
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!
1

! !
n ii

i n

n
B u u u

i n i



          (3) 

In this way, only the co-ordinates of the curve  
 1 3, , 1, 2, ,i ix x i m   

O x x

 0R

, are known in the co-ordinate ref- 
erence system 1 3 . In order to solve the shell prob- 
lem, it is important to express the horizontal radius 



  of a generic parallel and the radii of curvature 
   , sR R    in the meridian and circumferential di- 

rections as functions of  . Based on the differential 
geometry [7,12,57,80,83], the radius of curvature of the 
meridian curve can be described as a function of 3x  us- 
ing the following expression: 

 

3
2 2 2

1
3 2

3 3

d d
1

d d
1x x

R x
x x

           
         (4) 

It is worth noting that the derivatives of the meridian 
curve are not known a priori, so that a numeric method to 
evaluate the first and second derivatives of the meridian 
curve is required. The differential quadrature rule allows 
to approximate these derivatives using the following de- 
finition [26]: 

     
1

d
, for 1, 2, ,

d
i

n N
n

ij jn
j

x x

f x
f x i

x




   N    (5) 

where  n
ij  are the weighting coefficients of the n-th 

order derivative. By discretizing the domain  

 31 3, mI x x   
 

using the Chebyshev-Gauss-Lobatto (C-G-L) grid distri- 
bution: 

 

 

3 31
3

3 31 3

1
ˆ 1 cos π ,

1 2

ˆfor 1, 2, , , for ,

m
i

m

x xi
31x x

N

i N x x x

           
   


 



 
     (6) 

and interpolating the 1x


 co-ordinates of the curve points 
derived by the Equations (2) using the previous calcu- 
lated points (6), the general curve can be represented by 
the new co-ordinates points  1 3ˆ ˆ,i ix x , for . 
Applying the differential quadrature definition (5), the 
expression (4) assumes the following discrete aspect: 

1, 2, ,i N 

     3 3

3
2 2

ˆ ˆ1
3 1

1 1

ˆ ˆ1 ,

for 1, 2, ,

N N
x x

i ij i ij
j j

R x x x

i N

   

 

  
        



 



2
1̂i    (6) 

where  3x̂ n
ij
  are the weighting coefficients evaluated in 

the domain  31 3, mI x x   
. As a results of the differential 

geometry [7,12,57,80,83], it is possible to introduce the 
following relation: 

1

3

dπ
arctan

2 d

x

x



  


 

                   (7) 

By using the differential quadrature definition (5), the 
relation (7) can be expressed in the discrete form: 

   3ˆ 1
3 1

1

π
ˆ ˆ ˆ ˆarctan ,

2

for 1, 2, ,

N
x

i i ij i
j

x x

i N

   



 
   









       (8) 

By discretizing the domain  1ˆ ˆ, NI    using the 
Chebyshev-Gauss-Lobatto (C-G-L) grid distribution: 

 

 

1
1

1

ˆ ˆ1
ˆ1 cos π ,

1 2

ˆ ˆfor 1,2, , , for ,

N
i

N

i

N

i N

 
 

  

         
 

      (9) 

and interpolating the 1̂x  and 3x̂  co-ordinates of the 
curve points using the calculated points (9), the general 
curve can be represented by the following new co-ordi- 
nate points  1 3,i ix x  , for . Thus, all the 
discrete points of the curve are determined in terms of 
the co-ordinates 

1, 2,i ,  N

 1 3i,ix x   and the angle i . In the Fig- 
ure 3, a Rational Bézier curve, its control points and the 
curve co-ordinates  1 3,i ix x  , evaluated as above exposed,
are represented [80]. The vectors of the control points 
and the weights used in Figure 3 are the following: 

 

 
 
 

1

3

0.2 0.7 1.2 1.4 1.4 1.2

0 0.2 0.6 1 1.5 2

1 1 1 1 1 1



 



x

x

w

        (10) 

Based on the previous considerations, the horizontal 
radius  0R   of a shell of revolution assumes the fol- 
lowing discrete form: 

 R R  0 0 1 , for 1,2, ,i i i bx R i N       (11) 

For doubly-curved revolution shells the Gaus
da

s-Co- 
zzi relation can be expressed as follows: 

0d
cos

R
R

d  


        (12) 

By using the differential quadrature definition (5), it is 
po

       

ssible to determine the radius of curvature  R   in 
meridian direction and its first and second der  in 
discrete form: 

 

ivatives

 1
0

1

1
, for 1, 2, ,

cos

N

i i ij i
ji

R R R i N
   

 

     (13) 

 1

1

d d
, for 1, 2, ,

d d
i

N

ij i
ji

R R
R i  





  

    N      (14) 

 
2 2

2

2 2
1

d d
, for 1, 2, ,

d d
i

N

ij i
j

i

R R
R i  





  

     N   (15) 
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 
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i ix x
 

1 3 . Figure 3. A Rational Bézier curve 

 
Finally, as a results of the differential geometry [7,12, 

57,80,83], the radius of curvature  sR   in circumfer- 
ent

 a discrete form as follows: 
ial direction for a shell of revolutio be expressed n can 

in

  0 , for ,
sin

i
si s i

i

R
R R i N


        (16) 

It is worth noting that, follo

1,2,

wing the previous consid- 
erations, all the useful geometric parameters 
the surface of revolution under consideration 
in discrete form (11)-(16). As shown, the differential 
qu

sumed; 6) the rotary inertia and the initial curvature are 
also taken into account. Consistent with th assumptions 

f a mod  above, the 
displacement field considered in this study follows the 

describing 
are known 

adrature rule (5) has been used to approximate the de- 
rivatives needed for the definition of the geometry of a 
shell of revolution. As concerns the shell theory, the pre- 
sent work is based on the following assumptions: 1) the 
transverse normal is inextensible so that the normal strain 
is equal to zero:  , , , 0n n s t     ; 2) the transverse 
shear deformation is considered to influence the govern- 
ing equations so that normal lines to the reference surface 
of the shell before deformation remain straight, but not 
necessarily norma relaxed Kirchhoff- 
Love hypothesis); 3) the shell deflections are small and 
the strains are infinitesimal; 4) the shell is moderately 
thick, therefore it is possible to assume that the thickness 
direction normal stress is negligible so that the in-plane 
assumption can be invoked:  , , , 0n n s t     ; 5) 
the linear elastic behavior of anisotropic materials is as- 

First-order Shear Deformation Theory and it can be put 
in the following form: 

 

l after deformation (a 

e 
o erately thick shell theory reported

   

     

   

, , , 1 , , , ,

, , , 1 , , , ,

, , , , ,

s s s
s

U s t u s t s t
R

U s t u s t s t
R

W s t w s t

  


    

    

  

 
    
 
 

   
 



  (17) 

where  are the displacement components of 
points l he middle surface 

, ,su u w
ying on t  0 

 and normal
ariable. 

 of the shell, 
along m rcumferential  directions, 
respectiv ile is the time v

eridian, ci
ely, wh t    and s  

ould 
flec- 
at is 

are normal-to-mid-surface rotations, res . 
nemati pressed by E 7) sh
be sup by he statemen ell de
tions ll and strains are in

pecti
quations

t that the sh
fin

vely
 (1

itesimal, th

The ki- 
c hypothesi
plemented 

 are sma

s ex
 t

 t h . T, ,w s he in-plane displacements U  and sU  
vary linearly through the thickness W  remains 
independent of 

, while 
 . It should be also remarked that, dif- 

ferently from the previous works by Tornaben 65,77,7 , 
the displacement field has been improved taking into 

e [ 8]
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account the real geometry of the shell and in particular 
the curvature effect has been directly introduced into the 
kinematical model as proposed by Toorani and Lakis [19]. 

Due to the change of the kinematical model the relation- 
ships between strains and displacements along the shell 
reference surface  0   become the following: 
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that are different from those presented in previous papers 
[77,78]. In the above Equations (19), the first four strains  

 
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 

0 0 0 0, , ,s s      are the in-plane meridian, circumferential 

and shearing components, and 0 0 0 0, , ,s s      are the 

analogous curvature changes. The last two components 

0 0,n sn 

 

 are the transverse shearing stra
ition assumed in the following i

composite linear elastic material. Accordingly, the fol- 
lowing constitutive equations relate internal stress resul- 

 

ins. The shell 
s a laminated compos

tants and internal couples with generalized strain com- 
ponents (18) on the middle surface: 
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               (19) 

 
where the elastic engineering stiffnesses  q

ijmA  which depend on curvatures are defined as follows (see Appendix for 
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more details): 
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      (20) 

 
Several approaches can be found in literature to evalu- 

ate the engineering elastic constants  q
ijmA  [7,16-18]. It is 

worth noting that due to the elastic engi- 
neering stiffnesses 

 fact that the 
 q
ijmA  

rivatives respec
depend on curvatures, the cor- 

responding de t to the co-ordinates along 
the meridian   and circumferential s  directions of 
the reference surface have to be evaluated. In order to 
erform this operation, the Differentia uadrature rule p l Q

[26] is used. Thus, the derivatives of the elastic engineer- 
ing stiffnesses  q

ijmA  are numerically eval d. uate   is 
e shear correth ction factor, which is usually taken equal 

to 5 6  , such as
of 

 in the present l  the 
determination shear correction factor or com
laminated structures is still an unresolved issue, because 
these factors depend on various parameters [18]. In Equa-  

tions (19), the four components 

work. In particu
s f

ar,
posite 

, , ,s s sN N N N  
tial and shearing

 are the 
in-plane meridian, circumferen  force  
resultants, and , , ,s s sM M M M    are the analogous  

couples, while , sT T  
e above
resultants

are the transverse shear force re- 
sultants. In th  definitions (19) the symmetry of 
shearing force  ,s sN N   and torsional couples 

,s sM M   is not assum d as a further hypothesis, as 
done in Reissner-Mindlin th his hypothesis is in 

plates. The assumption under discussion is derived from  
the consideration that ratios 

e
eory. T

fact satisfied only in the case of spherical shells and flat 

, sR R   cannot be  

neglected with respect to unity. For the k-th orthotropic 

lamina the elastic constants  k
ijQ  in the lam

dinate system 

inate co-or-  

O s   can be written as: 
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where 

                (21) 
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 

 

 k  is the orientation angle of the principal ma- 
terial co-ordinate system ˆˆ ˆO s 

inate co-ordi
 of the k-th orthotropic 

ply with respect to the lam nate system  

O s  . Furthermore, the elastic constants  in the 
terial co-ordinate system

  k
ijQ

ma  ˆˆ ˆO s   are e pressed as 

 

x
follows: 
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where 1 2 13 23 12 12, , , , ,E E G G G   are the engineering pa- 
rame  should be noted that for a 
comp orthotropic material, the 
parame

ters of the k-th lamina. It
lete characterization of an 

ters 3 13 23, ,E    have to be taken into account, as 

well-known. Following the virtual work principle in dy- 
namic version, and remembering the Gauss-Codazzi re- 
lations for the shells of revolution (12), five equations of 
dynamic equilibrium in terms of internal actions can be 
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written for the revolution shell element: 
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mass inertias and 
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are the  k  is the mass density of the 
material per unit of volume of the k-th ply, while ,F Fh   
and ,F Fh   are the mass density of the material per unit 
of volume a ckness of the elastic foundation at 
the top and the bottom surface of the shell, respectively. 

nd the thi

he e equations represent transl
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           

u

2

0

sin
1

2

h

R 
 

            

 

2 2

0 0

3 3

0 0

2

0

sin sin
1 1 1 1

2 2 2 2

sin sin
1 1 1 1

2 2 2 2

sin
1 1 1

2 2 2 2

s s s

s s

s s

h h h h
q q q

R R R R

h h h h
k k

R R R R

h h h h
k k

R R R

 

 

 

 

 



 

 

 

      
                    

                              
   

         

su

2

0

sin
1

2 s

h

R

 
          
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0 0 0

2

2 2

2
0

sin sin sin sin
1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

1 cos

1 11
22

n n n n n

F

h h h h h h h h
q q q k k w

R R R R R R R R

w
G

hh R RR
RR

   




  




   



               
                                                 


 

            

0



3

3

0

2

2 2
0

0

2

1 sin
1 1

2 2sin
1

2

1 cos

w h h

R Rsh
R

w










   
            


2 2

2
0

0

1

sin
1

2 2

1

sin
1 11

2 22

F

R w

h h
R

R R

G
h hh R RR
R RR









 

 

  
  
   

  
                 





  
                  

3

3

2

2 2
0

0

1
2

1 sin
1 1

2 2sin
1

2

R w

h
R

R

w h h

R Rsh
R








 





 
  

    
        



   

             

 

 

  
  
 

0 0

2 2

0 0

2

0

sin sin
1 1 1 1

2 2 2 2 2 2

sin sin
1 1 1 1

2 2 2 2 2

sin
1 1 1

4 2 2

h h h h h h
m q q

R R R R

h h h h h
k k

R R R R

h h h h
k k

R R

  
 

u  
 

 


 

 



 

 

 

      
                    

                              

  
          0

sin
1

2 2

h

R R 


 
   
        

 

 

0 0

2 2

0 0

2

0

sin sin
1 1 1 1

2 2 2 2 2 2

sin sin
1 1 1 1

2 2 2 2 2

sin
1 1 1

4 2 2

s s s

s s s

s s

h h h h h h
m q q

R R R R

h h h h h
k k

R R R R

h h h h
k k

R R

 

 



 

 



 

 

 

      
                    

                              

  
         

u

0

sin
1

2 2 s

h

R R

 
   

        

                                    (25) 

 
where , , , , ,s s n nq q q q q q 

       
, , ,

are the external forces and 
, , s s n nk k k k     are th

in the three principal directi
k k 
  e Winkler elastic stiffnesses 

ons , ,s   
spectively; 

at the top and 
shell, rethe bottom surface of the ,F FG G 

foundatio
 are 

sterna n at 
the top and the bottom surface of the shell. It is worth 

noting that the formulation of the Winkler-Pasternak 
foundation is based on the first-order approximated as- 
sumption that the foundation is a homogeneous material 
of uniform thickness 

the shear modulus of the Pa k elastic 
,F Fh h 

he eff
 [12,79,83]. Furthermore, as 

additional hypothesis, t ect of the damping of the 
foundation is neglected. The three basic set of equations, 

Copyright © 2013 SciRes.                                                                                 WJM 



F. TORNABENE, A. CERUTI 10 

namely the kinematic (18), constitutive (19) and motion 
(23) equations may be combined to give the fundamental 
system of equations, also known as the governing system 
of equations. By replacing the kinematic equations (18) 
into the constitutive equations (19) and the result of this 
substitution into the motion equations (23), the complete 
equations of motion in terms of displacements can be 
written as: 

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

0 1

0 1

0

1 2

1 2

0 0 0

0 0 0

0 0 0 0

0 0 0

0 0 0

s s

n

s s

s s

s

L L L L L u q

L L L L L u q

L L L L L w q

L L L L L m

L L L L L m

I I

I I

I

I I

I I

 

 

 






  
  
  
   
  
  
    
 
 
 
 
 
 
  

s

s

u

u

w






 
 
 
 
 
 
  







 

  
  
  
  
  
  
    

    (26) 

where  are the equilibrium operators 
and the tias are defined as follows: 

, , 1, ,5ijL i j  
new mass iner

1 2 2
0 0 1 12

2
1 2 2

0 0 1 12
0 00

2
,

2 sin sin sin
,s s

I I I
I I I I

R RR

I I I
I I I I

R RR

 
 

  

    

    
  (27) 

It is worth noting that, differently from previous works 
by Tornabene [77,78], the mass matrix and the equilib- 
rium operators , introduced in Equation (27), have 
changed due to hoice of using the new kinematical 
model (18). Fu ore, the second derivative of the 
principal radius

 ijL
 the c
rtherm
 R    respect to   

e
fu

has to be evalu- 
ated, as it can be d from the explicit form of the 
equilibrium . Three typ s of boundary con- 
ditions are co ely the lly clamped edge 
boundary condition (C), soft simply supported edge boun- 
dary conditions (S) and the free edge boundary condition 
(F). The equations describing the boundary conditions 
can be written as follows: 

Clamped edge boundary conditions (C) 

0

 infe
 operators 

nsider

rre

ijL
ed, nam

0 1

0

at or ,0

s su u w

s s

  

   

    

   
          (28) 

0

0

at 0 or ,

s su u w

s s s

 

0 1

 

   

Soft simply supported edge boundary conditions (S) 

    

 
           (29) 

0 1 0

0, 0

at or ,0

s s

M
u w N M

R

s s


 





   

     

   

      (30) 

0 0 1

0, 0

at 0 or ,

s
s s

s

M
u w N M

R

s s s

 

  

     

   
            (31) 

Free edge boundary conditions (F) 

0

0 1 0

sin
0

at or ,0

s s s

M
N N M T M M

R R

s s


     





   

      

   

 (32) 

0

0 0 1

sin
0

at 0 or ,

s
s s s s s s

M
N M N T M M

R R

s s s


 





  

      

   

 (33) 

where 0 1̂   and 1 ˆN  . In addition to the external 
bounda tions nematic and physical com- 
patib itions e satisfied at the common 
closin ans wi

ry condi
ility cond
g meridi

, the ki
 should b
th 0, 02πs R , if a complete shell 

of rev  con ematic compatibility 
conditio de th  displacements. The 

n be only represented 
by th ontinu  for the generalized 
stress resu s. To lete revolute shells, it 
is necessa  im atic and physical 
comp nd e two computational 
meridi

olution is
ns inclu

physical comp
e five c

ltant
ry to

atibility co
ans with 

sidered. Th
e contin

atibility conditions ca
ous cond

 consider 
plement the 

itions be
0

e kin
uity of

itions
comp

kinem
tween th

s   and with 0 02πs R : 
s al


ditionKin ong the closing 
meridian 

ematic compatibility con
 00, 2πs R  

       
   
     
 

0 0

0

0

0 0 1

,0, , , , ,0, , , ,

,0, , , ,

,0, , , , ,0,

, , for

s s

s

s

u t u s t u t u s t

w t w s t

t s t t

s t

 

 

   

 

     

    

 





  

  (34) 

Physical compatibility conditions along the closing 
meridian  00, 2πs R  

   

   

   

   

       

0

0 0
0

0
0

sin
,0, ,0,

sin
, , , , ,

, ,
, , ,

,0, , , , ,0, , , ,

s s

s s

s

s
s

N t M t
R

N s t M s t
R

N t
R

M s t
N s t

R

T t T s t M t M s t









 

 






   



 

 

 

 (35) 

   
0 0

0 0 1,0, , , for

s s s s

s sM t M s t       

where 0 1̂

,0,
,0, sM t 



   and ˆ1 N  . In an analogous way, in 
order to consider a toroidal shell of revolution, it is nec- 
essary to implement the kinematic and physical compati- 
bility conditions between the two computational parallels 
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with 0 0   and with 1 2π  : 
Kinematic compatibility conditions along the closing 

parallel  0,2π   

       
       
    0

0, , 2π, , , 0, , 2π, , ,

0, , 2π, , , 0, , 2π, , ,

0, , 2π, , for 0

s s

s s

u s t u s t u s t u s t

w s t w s t s t s t

s t s t s s

 

  

 

 

 

  

  (36) 

Ph mpatib itions along the closing 
paral

ysical co
lel  

 

ility cond

 
 0, 2π  

   

   

   

 

0, ,

2π, ,

0, ,

2π, ,

0, ,

N s t

N s

N s

N s

s t







eri

Generalized
 to discre
 in term

 

0

0

0, ,

2π, ,
,

sin
0, ,

sin
2π, , ,

2π, ,

s s

s s

M s t

R

M s t
t

R

t M s t
R

t M s t
R

T s t










 

 





 

 

 

 (37) 

3. Num cal Implementation 

The  Differential Quadrature method 
used tize the derivatives in the governing equa- 
tions s of displacements as well as boundary and 
co

ence s

   
    0

, 0, , 2π, , ,

0, , 2π, , for 0s s

T M s t M s t

M s t M s t s s

   

   

will be 

mpatibility conditions. Since a review of the GDQ Me- 
thod is presented in Tornabene [65,83], the same ap- 
proach is used in the present work about the GDQ tech- 
nique. The Chebyshev-Gauss-Lobatto (C-G-L) grid dis- 
tribution is assumed. Since the co-ordinates of the grid 
points of the refer urface in the   direction are in- 
troduced in Equation (9), then the co-ordinates of the 
grid points in the s  di ction are the following: re

  

0

0 0

1
1 cos π

1 2

for 1,2, , , for 0, with

j

sj
s

M

j M s s s R

        
  

  (38) 

where M  is the total number of sampling 
 discretize the domain in 

points used 
to s  direction of the doubly- 
curv  It has been proven that 
interpo polynomials, the Chebyshe
samp  guarantees convergence and effi- 

GDQ technique [57-59,6
nertias are set to zero, the GDQ 

pr m 
(26) in  
into a ed sum of node values of independent vari- 
ables. Each approximated equation is valid
sampling point. Thus, the whole system of differential 

equations has been discretized and the global assembling 
leads to the following set of linear alg

ed shell.
lating 

ling points rule
ciency to the 
tic analysis, when the i

 weight

for the Lagrange 
v-Gauss-Lobatto 

3,83]. For the sta- 

ocedure enables to write the equations of equilibriu
discrete form, transforming each space derivative

 in a single 

ebraic equations: 

bb bd b b

db dd d d

     
     

          

K K f

K K f


           (39) 

In the above mentioned matrices and vectors, the par- 
titioning is set forth by subscripts  and  ref
to the system degrees of freedom and standin  for boun- 
dary and domain, respectively. In this sense, -equa- 
tions represent the discrete bound y cond which 
are valid only for the points lying on const
of the shell; while -equations are the equ
equations, assigned to the interior nodes. In order to 

e comp ore e



b

ar
 

d ,
g

itio
rai

erring 

b
ns, 
ned 

ilib
edges 
rium d

make th utation m fficient, static condensation 
of non-domain degrees of freedom is performed: 

 1 1
dd db bb bd d db bb b

   dK K K K f K K f      (40) 

The deflection of the structures considered can be de- 
termined by solving the linear algebraic problem (40). In 
particular, the solution procedure by means of the GDQ 
technique has been implemented in a MATLAB code. 
Otherwise, when the external forces , , , , ,s s n nq q q q q q 

       
are set to zero, the free vibration of laminated composite 
doubly-curved shells and panels of revolution can be stu- 
died. Using the d of variabl on, imetho e
bl

s 

 separati t is possi- 
e to seek solutions that are harmonic in time and whose 

frequency i 2πf  . The displace
written as follows: 

ment field can be 

   
   
   
   
   

, , , e

, , , e

, , , e

, , , e

, , , e

i t

s i t
s

i t

i t

s i t
s

u s t U s

u s t U s

w s t W s

s t B s

s t B s

 






 

 

 

 

  

  











 





          (41) 

where the vibration spatial amplitude values , , ,sU U W  
, sB B  

the wh
fulfill the fundamental differential system

ole system of differential equations 
cretized and the global assembling leads to the following 
linear eigenvalue problem: 

. Thus, 
has been dis- 

2bb bd b b

db dd d dd d


       

       
              

K K δ 0 0 δ

K K δ 0 M δ
   

In order to make the computation more efficient, kine- 
matic condensation of non-domain degrees of freedom is 
performed: 

 (42) 

  1 2
dd db bb bd d dd K K K K δ M δ       (43) 

The natural frequencies of the structure considered can 
be determined by solving the standard eigenvalue prob- 
lem (43). In particular, the solution procedure by means 
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 GDQ been implemented in a MA- 
TL

ned using t e eigs function of MATLAB soft- 
ware. More details regarding the way to obtained the 
Equations (40) and (43) can be found in the previous 
works [57-59,63,65-68,83]. It is worth noting tha
the present approach, differing from the finite element 
method, no integration occurs prior to the global assem- 
bl

putational cost saving in favor of the Differen- 
tial Quadrature technique. 

4. Numerical Results 

In the present paragraph, some results and considerations 
about the static analysis and the free vibration problem of 
laminated composite doubly-curved shells and panels
revolution are presented. The analysis has been c
out by means of numerical procedures illustrated above. 
One of the aims of this paper is to compare results ob- 
tained through the GDQ method with the ones obtained 
through finite element techniques. In order to verify the 
accuracy of the present method, some comparisons and 
tests have been performed. Extensive attempts to validate 

de for the isotropic 
 in the Ph.D. The- 

r 
example, symbolism CSCF shows that the edges 

0

of the  technique has ment method. The geometrical boundary conditions for a 
panel are identified by the following convention. FoAB code. Finally, the results in terms of frequencies 

are obtai h

0 1, 0, ,d s s s      
ported, clamped and free, 
fo

 are clam
respectively. On the contrary, 

ped, simply sup- 

t, with r a complete shell of revolution or for a toroidal shell, 
symbolism CF shows that the edges 0   and 1   
or 0s   and 0s s  are clamped and free, respectively. 
The missing boundary conditions are the kinem ic and 
physical compatibility conditions that are applied at the 
same closing meridians for 0s   and 0 02π

y of the linear system, and this approach leads to a fur- 
ther com

at

s R  or at 
the same closing parallels for 0   and 2π  , re- 
spectively. Table 1 presents the static deflection at the 
point  90 ,0A     for a SSSS spherical panel resting 
on elastic foundation and subjected to a uniformly dis- 
tributed load 1000 a    at the top surfa0 Pnq
sidering different lami
the

ce by con- 
n be seen, 

 of 
arried nation schemes. As c

ures 4

a

 and 

 numerical results show an excellent agreement for all 
the cases considered. GDQ results are compared with the 
FEM results obtained with Straus 7 commercial software 
using 8 node parabolic shell elements. In order to illus- 
trate the effect of the foundation Fig  
the stress resultants for a 

5 show
 30 45 70  CCCC spherical 

panel subjected to a uniformly distributed load 
10000 Panq    at the top surface. Figure 4 illustrates 

the stress resultants obtained without considering the 
foundation, whil Fig e 5 presents the same quantities 
obtained considerin tic foundation. The geomet- 

the numerical procedure have been ma
and anisotropic cases and can be found
sis by Tornabene [57] and in the book by Tornabene [83]. 
In this work, the static deflection and the frequency para- 
meters evaluated by the present formulation are in good 
agreement with the results obtained with the finite ele- 

e ur
g the elas

rical and material properties are the same reported in 

int 

 
Table 1. Static deflection for a SSSS spherical panel at the po  ,A  90 0  resting on elastic foundation and subjected to 

ce. 

pe

a uniformly distributed load    10000 Panq  at the top surfa

Foundation pro rties: 30  kg mF
  , 0 mFh  , 0 N mFG  , 30 N msk k

    

30 N mnk    7 31.5 10 N mnk     7 37.5 10 N mnk     

Lamination scheme GDQ-GST Straus Straus 

 100 100 8 nodes  
GDQ-GST 

31 31  

Straus 

 100 100 8 nodes  31 31   100 100 8 nodes  
GDQ-GST 

31 31  

Isotropic  −1.570E−04 −1.571E−04 75E−1.2 −04 −1.274E−04 −7.281E−05 −7.246E−05 

 0 90  −5.911E−04 −5.862E−04 −3.257E−04 −3.229E−04 −1.129E−04 −1.119E−04 

 0 90 −5.922E−04 −5.875E−04 −3.20  63E−04 −3.235E−04 −1.131E−04 −1.121E−04 

 0 90
as

 −5.911E−04 −5.863E−04 −3.263E−04 −3.235E−04 −1.130E−04 −1.120E−04 

 0 90
s

 −5.909E−04 −5.862E−04 −3.2

 30  −4.589E−04 −4.418E−04 −2.5

64E−04 

03E

−3.236E−04 −1.130E−04 −1.120E−04 

−04 −2.444E−04 −9.899E−05 −9.758E−05 

 30 45  −4.476E−04 −4.276E−04 −2.303E 237E−04 −9.102E−05 −8.940E−05 −04 −2.

 30 45 70  −4.413E−04 −4.253E−04 −2.420E−04 −2.361E−04 −9.507E−05 −9.351E−05 

 30 45 70 90  −3.859E−04 −3.764E−04 −2.364E−04 −2.319E−04 −9.686E−05 −9.553E−05 

*Geometric characteristics: 10 msR R   , 0 mbR  , 60 ,120    
  , 30 ,30  

  , 0.09 mh  , Isotropic material: 73 GPaE  , 0.3  , 

32700kg m  , Orthotropic material: 1 137.9 GPaE  , 2 8.96 GPaE  , 12G 13 7.1 GPa , 23 6.21 GPaG  , 12 0.3  ,G 31450kg m  . 
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Figure 4. tress result S ants for a  30 45  sph  with y dist  at 

the top surf e and wit found

Table 1. As n be s he fig ffect 
 the stress esultant xpected

In terms of first
cies obtaine thod for the neral Sh l 

ory ( nted d stic 
foundations, are com  results btaine
with Straus 7 commercial 
the geom and th aterial properties re reported in  

70  CCCC erical panel  a uniforml ributed load   nq 10000 Pa

ac hout elastic ation. 
 

ca een from t ures, the e of The
the foundation reduces  r s as e . 

Tables 2-4, the results, in  ten frequen- 
d by the GDQ Me  Ge el

pared with the FEM  o d 
software. The details regarding 

etry e m  a

GST) prese above with an without ela
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 30 45 70  CCCC spherical panel with a uniformly distributed load  at 

-Pasternak

  10000 PanqFigure 5. Stress resultants for a 

the top surface resting on Winkler  elastic foundation: .  k 7 37 5 10 N m  and     h G

 

  F sk k 0 . F Fn

tables. For the present GDQ results, the grid distributions 
(9) and (38) with 31N M   have been considered. 
Tables 2-4 present the first ten frequencies for a SSSS 
spherical panel characterized by  0 90 ,  0 90 0  and 

 30 45 70  lamination scheme, respectively. As can be 
seen, the numerical results from the GDQ methodology 
are very close to those obtained by the commercial pro- 
gram and show an excellent agreement. Tables 5-7 pre-      
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 0 90  Table 2. First ten frequencies for a SSSS spherical panel resting on elastic foundation. 

Foundation properties: 30 kg mF
  , 0 mFh  , 0 N mFG  , 30 N msk k

    

30 N mnk    7 31.5 10 N mnk     7 37.5 10 N mnk     

Mode 
[Hz] GDQ-GST Straus GDQ-GST Straus 

 100 100 8 nodes31 31   100 100 8 nodes 31 31  
GDQ-GST Straus 

31 31   100 100 8 nodes

1f  59.775 60.016 77.703 78.035 96.630 97.056 

2f  64.413 64.661 83.209 83.552 111.257 111.754 

3f  69.263 69.518 87.167 87.516 125.527 126.086 

4f  69.527 69.790 87.285 87.604 134.209 134.795 

5f  70.561 70.777 87.554 87.908 135.981 136.554 

6f  70.612 70.866 88.298 88.644 136.490 137.085 

7f  73.148 73.425 89.717 90.078 137.712 138.301 

8f  75.950 76.275 92.796 93.200 137.805 138.399 

9f  76.739 76.996 93.436 93.784 137.961 138.549 

10f  79.349 79.641 95.537 95.914 141.355 141.981 

*Geometric characteristics: , 10 msR R   , 0 mbR  60 ,120    
  , 30 ,30   

  , , Orthotropic material: , 0.09 mh 
1 137.9 GPaE 

2 8.96 GPaE  , 12 13G G  7.1 GPa , 23G  6.21 GPa , 12 0.3 , 31450  kg m . 

 
 0 90 0  Table 3. First ten frequencies for a SSSS spherical panel resting on elastic foundation. 

Foundation properties: 30 kg mF
  , 0 mFh  , 0 N mFG  , 30 N msk k

    

30 N mnk    7 31.5 10 N mnk     7 37.5 10 N mnk     

Mode 
[Hz] GDQ-GST Straus GDQ-GST 

31 31   100 100 8 nodes 31 31  

Straus 

 100 100 8 nodes
GDQ-GST Straus 

31 31   100 100 8 nodes

1f  59.914 60.144 77.848 78.173 96.630 97.056 

2f  65.246 65.463 83.870 84.190 111.179 111.678 

3f  68.782 68.984 86.022 86.330 125.657 126.215 

4f  72.096 72.316 89.482 89.802 134.655 135.228 

5f  72.494 72.754 89.668 90.019 135.572 136.139 

6f  73.792 74.062 90.991 91.351 137.496 138.082 

7f  75.771 76.021 91.902 92.244 138.703 139.276 

8f  79.808 087 95.985 96.351 139.605 80. 140.196 

9f  81.940 82.157 96.630 47  97.055 140.049 140.6

10f  83.242 83.452 97.682 97.995 143.482 144.083 

*Geometric characteristics: 10 msR R   , 0 mbR  , 60 ,120    
  30 ,30 ,   

  , 0.09 mh  , Orthotropic material: 1 137.9 GPaE  , 

2 8.96 GPaE  , 12 13 7.1 GPaG G  , 23G  , 6.21 GPa 12 0.3 , 31450kg  . m
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Table 4. First ten frequencies for a  30 0  SSSS spherical panel resting on elastic foundation45 7 . 

Foundation properties: 30 kg mF
  , , 0 mFh  0 N mFG  , 30 N msk k

    

30 N mnk    7 31.5 10 N mnk     7 37.5 10 N mnk     

Mode 
[Hz] GDQ-GST 

31 31  

Straus 

 100 100 8 nodes
GDQ-GST 

31 31  

Straus 

 100 100 8 nodes
GDQ-GST 

31 31  

Straus 

 100 100 8 nodes

1f  49.808 50.761 72.378 73.212 113.366 114.996 

2f  50.298 51.252 72.504 73.353 122.924 124.126 

3f  58.625 59.540 78.395 79.266 126.787 127.684 

4f  59.718 60.646 79.653 80.515 130.940 131.884 

5f  63.879 64.983 82.107 83.137 132.074 132.994 

6f  65.655 66.760 84.378 85.393 134.626 135.592 

7f  68.939 69.923 85.701 86.673 135.405 136.422 

8f  70.901 71.688 88.598 89.372 138.339 139.210 

9f  75.107 76.139 91.808 92.794 139.764 140.811 

10f  77.134 78.199 92.876 93.925 139.863 140.883 

*Geometric c aracteristics: ,h 10 msR R    bR  0 m , 60 ,120     ,   30 ,30  
  , 0.h  , Ort aterial: , 09 m hotropic m 1 137.9 G PaE

2 8.96 GPaE  , 12 13 7.1G G   GPa , 23G  6.21 GPa , 12 0.3 , 31450  kg m . 
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Table 5. First ten frequencies for a 30  shell resting on Winkler-Pasternak elastic foundation45  CC . 

Foundation properties: 31800kg mF
  , 0.1 mFh  , 7 31.5 10 m  , Nnk  55 10 N mFG   , 7 30.75 10 N msk k

     

0, 0,

0,

0, 0

n

s F

F F

k k

k G

h





 

 

 

 

 

 

0,  

0 0,

0,

0, 0

n

s F

F F

k k

k G

h





 

 

 

 

 

 

 

,

0,

0, 0,

0,

0, 0

n

F F

k k



 

 

 

 

0,s Fk G

h

 

 

 

0, 0,

0,

0, 0

n

s F

F F

k k

k G

h





 

 

 

 

0, 

 

 

0, 0,

0,

0, 0

n

s F

F F

k k

k

h





 

 

 

 

 

 

 0,G
Mode 
[Hz] 

GDQ-GST GD GDQ-GST GDQ-RM GD GDQ-RM GST GD GDQ-GST GDQ-RMQ-RM Q-GST GDQ- Q-RM 

1f  439.664 43 440.999 441.043 44 441.345 364.415 36 365.394 39 9.768 1.317 4.341 365.3

2f  447.296 44 449.607 450.144 45 450.711 375.370 37 375.720 49 7.842 0.176 5.795 376.1

3f  447.296 447.842 449.607 450.144 450.176 450.711 375.370 375.795 375.720 376.149 

4f  461.762 461.97 463.248 463.374 463.63 463.779 386.898 387.10 1 1 8 7 6 387.43 387.62

5f  461.762 46 464.276 464.916 46 465.549 389.309 38 389.477 08 2.406 4.911 9.840 390.0

6f  461.907 46 464.276 464.916 46 465.549 389.309 38 389.477 08 2.406 4.911 9.840 390.0

7f  487.146 48 489.657 490.261 49 491.024 411.574 41 411.661 66 7.753 0.422 2.079 412.1

8f  487.146 48 489.657 490.261 49 491.024 411.574 41 411.661 66 7.753 0.422 2.079 412.1

9f  523.557 52 02 436.676 437.571 4.045 525.718 525.638 525.9 525.823 436.735 437.510 

10f  523.557 524.045 525.718 525.638 525.902 525.823 436.735 436.676 437.571 437.510 

Foundation properties: 31800kg mF
  , 0.1 mFh  , 7 310 N mnk    , 7.5 65 10 N mFG   , 7 33.75 10 N msk k
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Mode 
[Hz] 

GDQ-GST GDQ-RM GDQ-GST GDQ-RM GDQ- GDQ-RM GDQ-GST GDQ-RM GDQ-GST GDQ-RMGST

1f  439.664 439.768 445.042 444.884 446.6 446.002 367.911 367.675 373.636 373.453 22 

2f  447.296 447.842 458.575 459.076 463.8 462.902 386.390 386.755 388.365 388.749 

3

02 

f  447.296 447.842 458.575 459.076 463.8 462.902 386.390 386.755 388.365 388.749 

4

02 

f  461.762 461.978 469.744 470.056 475.0 474.089 397.332 397.681 399.100 399.403 

5

05 

f  461.762 462.406 474.179 474.803 480.2 479.343 402.181 402.691 403.026 403.536 

6

84 

f  461.907 462.406 474.179 474.803 480.28 479.343 402.181 402.691 403.026 403.536 

7

4 

f  487.146 487.753 499.571 500.162 506.9 506.030 425.495 425.981 425.925 426.412 

8

79 

f  487.146 487.753 499.571 500.162 6.9 506.030 425.495 425.981 425.925 426.412 

9

50 79 

f  523.557 524.045 528.406 528.339 530.43 529.901 440.816 440.787 444.754 444.712 

10

4 

f  523.557 524.045 528.406 528.339 530.4 529.901 440.816 440.787 444.754 444.712 34 

*Control points and weights of the Bézier curve:  1 0.8 1.3 1.5 1.4 1.x 2 ,  3 0 0.5 1 1.5 2 x ,  1 1 1 1 1w , Geometric characteristics: 

0 360   , 0.1 mh  , 0 mbR  , Orthotropic material: 1 137.9 GE  , 2 8.96 GPaE  , 12 13 7.1 GPaG G  , 23 6.21 GPaG  , 12 0.3  , Pa

31450kg m  . 
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Table 6. First ten frequencies for a 0 CCC panel resting on Winkler-Pasternak elastic foundation30  C . 

sFoundation propertie : 3 ,, 0.1 mFh  7 31.5 10 N mnk    , 55 10 N mFG , 7 30.75 10 N msk k1800kg mF
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     

0, 0,

0, 0,

0, 0

n

s F

F F

k k

k G

h





 

 

 

 

 
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Mode 
[Hz] 

GDQ-GST GDQ-RM GDQ-GST GDQ-RM GDQ-GST GDQ-RM GDQ-GST GDQ-RM GDQ-GST GDQ-RM

1f  340.255 340.145 343.424 343.314 344.415 344.305 289.361 289.262 289.649 289.551 

2f  350.272 350.142 353.307 353.178 354.343 354.214 297.893 297.779 298.185 298.072 

3f  383.041 382.642 385.835 385.437 386.912 386.515 325.387 325.053 325.644 325.312 

4f  431.969 431.332 434.468 433.833 435.598 434.964 366.416 365.892 366.635 366.111 

5f  490.418 489.664 492.658 491.905 493.849 493.096 415.329 414.719 415.507 414.898 

6f  550.776 550.109 552.802 552.136 554.056 553.391 465.703 465.187 465.853 465.337 

7f  601.902 601.885 603.847 603.828 605.086 605.066 507.263 507.223 507.379 507.339 

8f  609.556 609.133 611.415 610.992 612.731 612.312 513.997 514.047 514.112 514.162 

9f  609.726 609.801 611.641 611.713 612.928 612.995 514.617 514.308 514.746 514.437 

10f  625.460 625.588 627.322 627.449 628.672 628.797 527.445 527.524 527.555 527.635 

Foundation properties: 3 ,, 0.1 mFh  7 37.5 10 N mnk    , 65 10 N mFG , 7 33.75 10 N msk k1800kg mF
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Mode 
[Hz] 

GDQ-GST GDQ-RM GDQ-GST GDQ-RM GDQ-GST GDQ-RM GDQ-GST GDQ-RM GDQ-GST GDQ-RM

1f  340.255 340.145 355.807 355.698 365.230 365.119 306.853 306.754 308.218 308.122 

2f  350.272 350.142 365.186 365.055 375.044 374.915 315.303 315.190 316.692 316.583 

3f  383.041 382.642 396.807 396.411 407.115 406.728 342.384 342.060 343.617 343.298 

4f  431.969 431.332 444.315 443.684 455.191 454.573 382.908 382.397 383.964 383.457 

5f  490.418 489.664 501.513 500.763 513.035 512.296 431.474 430.876 432.341 431.748 

6f  550.776 550.109 560.830 560.164 573.021 572.361 481.654 481.142 482.386 481.877 

7f  601.902 601.885 611.560 611.534 623.660 623.625 522.837 522.784 523.401 523.353 

8f  609.556 609.133 618.789 618.365 631.583 631.223 529.787 529.822 530.350 530.390 

9f  609.726 609.801 619.240 619.302 631.844 631.828 530.535 530.220 531.161 530.847 

10f  625.460 625.588 634.715 634.834 647.906 648.011 543.587 543.649 544.126 544.192 

     *Control points and weights of the Bézier curve: 1 0 0.5 1 1.5 2x , 3 0.8 1.3 1.5 1.3 0.8x  , 1 1 1 1 1w

, ,

, Geometric characteristics: 

, 1  Orthotropic material: , , , , , 0 90   0.1 mh   mbR  1 137.9 GPaE  2 8.96 GPaE  12 13 7.1 GPaG G  23 6.21 GPaG  12 0.3 
31450  kg m . 
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 60  FC shell resting on Winkler-Pasternak elastic foundation. Table 7. First ten frequencies for a 30

Foundation properties: 31800kg mF
  , ,0.1 mFh  7 31.5 10 N mnk    55 10 N mFG   7 30.75 10 N msk k
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Mode 
[Hz] 

GDQ-GST GDQ-RM GDQ-GST GDQ-RM GDQ-GST GDQ-RM GDQ-GST GDQ-RM GDQ-GST GDQ-RM

1f  72.894 73.118 85.036 85.215 85.527 85.705 71.828 71.978 73.601 73.752 

2f  80.378 80.658 91.421 91.653 92.019 92.246 77.392 77.581 79.033 79.225 

3f  80.378 80.658 91.421 91.653 92.019 92.246 77.392 77.581 79.033 79.225 

4f  100.235 101.287 109.478 110.428 110.279 111.221 92.985 93.778 94.201 94.991 

5f  100.235 101.287 109.478 110.428 110.279 111.221 92.985 93.778 94.201 94.991 

6f  120.959 122.408 129.744 131.116 130.877 132.261 110.158 111.325 110.812 111.964 

7f  120.959 122.408 129.744 131.116 130.877 132.261 110.158 111.325 110.812 111.964 

8f  139.742 140.410 148.060 148.701 149.746 150.406 125.669 126.227 126.043 126.595 

9f  139.742 140.410 148.060 148.701 149.746 150.406 125.669 126.227 126.043 126.595 

10f  166.126 166.471 173.369 173.699 175.529 175.867 147.128 147.416 147.395 147.681 

Foundation properties: 31800 kg mF
  , ,0.1 mFh  7 37.5 10 N mnk    65 10 N mFG   7 33.75 10 N msk k
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Mode 
[Hz] 

GDQ-GST GDQ-RM GDQ-GST GDQ-RM GDQ-GST GDQ-RM GDQ-GST GDQ-RM GDQ-GST GDQ-RM

1f  72.894 73.118 121.690 121.783 124.987 125.077 104.927 105.003 111.193 111.279 

2f  80.378 80.658 125.891 126.017 130.041 130.134 109.337 109.414 115.358 115.454 

3f  80.378 80.658 125.891 126.017 130.041 130.134 109.337 109.414 115.358 115.454 

4f  100.235 101.287 140.166 140.861 146.045 146.686 123.125 123.662 127.955 128.505 

5f  100.235 101.287 140.166 140.861 146.045 146.686 123.125 123.662 127.955 128.505 

6f  120.959 122.408 159.875 161.052 168.401 169.659 141.751 142.810 144.550 145.569 

7f  120.959 122.408 159.875 161.052 168.401 169.659 141.751 142.810 144.550 145.569 

8f  139.742 140.410 177.411 177.983 190.552 191.285 159.855 160.471 161.472 162.059 

9f  139.742 140.410 177.411 177.983 190.552 191.285 159.855 160.471 161.472 162.059 

10f  166.126 166.471 199.712 200.002 207.398 207.673 173.861 174.088 175.326 175.575 

   *Control points and weights of the Bézier curve: 1 0 0.3 1 1.5x , 2 3 2 1.2 0.85 0.75 x , 0.7 1 1 1 1w

istics: , al: , , , 

1 , Geometric character- 

0  0. 2 m , Orthotropic materi P a a , , 360  1 mh  , bR  1 137.9 G aE  2 8.96 GPE  12 13 7.1 GPG G  23 6.21 GPaG  12 0.3 
31450kg m  . 
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Figure 6. Mode shapes for the CC shell of Table 5. 
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problem for the static analysis and a standard linear ei- 
genvalue problem for the dynamic analysis. Numerical 
solutions have been compared with the ones obtained us- 
ing commercial programs. The comparisons conducted 
with FEM codes confirm how the GDQ simple numerical 
method provides accurate and computationally low cost 
results for all the structures considered. Furthermore, dis- 
cretizing and programming procedures are quite easy. The 
GDQ results show to be precise and reliable. The nume- 
rical tests dem confirm the favorable 
sion of the Generalized Differential Quadrature Method. 
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Appendix 

The engineering elastic stiffnesses  q
ijmA  which depend 

on curvatures for a doubly-curved shell of revolution are 
defined as it follows: 
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Using the Taylor geometric series expansion [7,16-18,  

85], it is possible to introduce the following approxima- 
tions: 
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nsions. 
By neglecting the series terms (45) with order higher 
than r  and by introducing the relations (45) into the 
integrals (44), it is obtained: 
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Thus, the engineering elastic stiffnesses 
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 q
ijmA  can be evaluated in the following manner: 
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The same results can be exactly obtained using the ex- 
ressions proposed by Qatu [16], by approximating the 

logarithmic function using a Taylor series expansion. Fur- 
thermore, the relations (47) can be defined in the form: 
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Finally, the exact integration of the expressions (47) assume the following aspect: 
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henever the reduced elastic constants 
 
w  k

ijQ  do not de- 
end onp    co-ordinate. The engineering elastic stiff- 
ess efinitions proposed in the present work rep- 

resent a generalization of the ones proposed in [7,16-18, 
77-79,85]. 
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