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ABSTRACT 

This paper presents a study of visco-elastic flow of an incompressible generalized Oldroyd-B fluid between two infinite 
parallel plates in which the constitutive equation involves fractional order time derivative. The solutions of field equa-
tions are being obtained for the motion of the said fluid between two parallel plates where the lower plate starts to move 
with steady velocity and the upper plate remains fixed in the first problem and the upper plate oscillates with constant 
frequency and the other being at rest in the second problem. The exact solutions for the velocity field are obtained by 
using the Laplace transform and finite Fourier Sine transform technique in terms of Mittag Leffler and generalised 
functions. The analytical expression for the velocity fields are derived and the effect of fractional parameters upon the 
velocity field is depicted graphically. 
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1. Introduction 

The interest in studying problems involving non-New- 
tonian fluid flows has considerably grown for their wide 
range of applications. Visco-elastic fluids are described 
by various types of constitutive equations. Among them 
Oldroyed-B fluid model has some success in describing 
polymetric liquids. Recently, the fractional derivatives 
are found to be quite flexible in describing the beha- 
viours of visco-elastic fluid and are studied by many 
mathematicians considering various motion of such flu-
ids. In their studies, the constitutive equations for gener-
alised non-Newtonian fluids are modified from the well 
known fluid models by replacing the time derivative of 
an integer order by the so-called Riemann-Liouville frac-
tional calculus operators.  

The practical applications of the fluid flow between 
two parallel plates are in the extraction and filtration of 
oils froms wells the drainage of water, irrigation, sanitary 
engineering, chemical engineering, food industry and 
also in the inter disciplinary fields such as biomedical 
engineering. Rajagopal and Gupta [1] studied a class of 
exact solutions to the equations of motion of a second 
grade fluid. Tan and Xu [2] investigated the impulsive 
motion of at plate in a general second grade fluid. Khan,  

Hayat and Agar [3] studied the exact solution for MHD 
flow of a generalized Oldroyed-B fluid with modified 
Darcy’s law. Tan and Masuoka [4] discussed Stokes first 
problem for a second grade fluid in a porous half-space 
with heated boundary. Qi and Xu [5] examined Stokes 
first problem for a viscoelastic uid with the generalized 
Oldroyd-B model. Fetecau, Khan, Fetecau and Qi [6] 
investigated exact solutions for the flow of a generalised 
Oldroyed-B fluid induced by a suddenly moved plate 
between two side walls perpendicular to the plate. Liu, 
Zheng, Zhang and Zong [7] discussed the oscillating 
flows and heat transfer of a generalised Oldroyed-B fluid 
in magnetic field. 

The objective of this paper is to obtain exact solutions 
for a class of unsteady flows of a viscoelastic fluid in-
volving the fractional derivative in time in the constitu-
tive equation of Oldroyed-B fluid between two infinite 
parallel plates. The fractional calculus approach in the 
constitutive relationship model is introduced. In this case 
the governing equations of motion are of fractional order 
partial differential equations in place of second-order 
Navier-Stokes equations. By using the Laplace and the 
finite Fourier sine transformations, we obtain the exact 
solutions of the velocity fields of the fluid problems un-
der consideration.  *Corresponding author. 
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2. Mathematical Formulation 

The constitutive equation of an incompressible and un- 
steady Oldroyed-B fluid can be written in the following 
form: 

0, 1 r
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where, T is the Cauchy stress tensor, p  is the hydrostatic 
pressure, I is the identity tensor, S is the extra-stress 
tensor, T A L L is the first Rivlin-Ericksen tensor, L 
is the velocity gradient, 0 , , r   are material constants, 
known as the viscosity coefficient, the relaxation and 
retardation times respectively and α, γ are fractional pa- 
rameters and 
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In the above relations V is the velocity vector,   is 
the gradient operator, tD and tD are Riemann-Liouville 
operators and defined by  
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where, Γ(.) is the Gamma function. 
Assuming the velocity field of the following form 

  ˆ,u y tV i              (5) 

where u is the velocity component in the x-direction, î  
being the unit vector in the x-direction, x- and y-axes are 
chosen along and perpendicular to the plates respectively. 
Substituting Equation (5) into Equation (1) and taking 
account of initial condition 

S(y, 0) = 0; y > 0, the fluid being at rest at t = 0,we get 
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u
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According to our problem,  

0,xx yy zz xz yz xy yxS S S S S S S       

We consider a generalised Oldroyed-B fluid between 
two infinite parallel plates. Then in the absence of a 
pressure gradient in the x-direction, the equation of mo-
tion yields the following equation: 

D

Dt
   

V
T                (7) 

where   is the density of the fluid and D Dt  is the 
material derivative, T is the stress tensor, V denotes ve-
locity vector. 

The continuity equation is 

0  V                  (8) 

which is satisfied by the velocity vector, V = (u(y, t), 0, 
0). Using the Equation (5) we get from Equation (7), 
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Now eliminating xyS between Equations (6) and (9) 
we get the following governing equation of motion as 
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where, 0   is the kinematic viscosity. 
Here we consider the unsteady incompressible viscoe-

lastic flow of a generalised Oldroyed-B fluid between 
two infinite parallel plates. We consider the following 
two problems: 

Problem 1: The flow between two parallel plates one 
of which is started moving suddenly and the other being 
at rest. 

Problem 2: The flow between two parallel plates one 
of which is oscillating and the other being at rest. 

Problem 1: The flow between two parallel plates one 
of which is started moving suddenly and the other being 
at rest. 

For the present problem we take the velocity field of 
the form,   ˆ,u y tV i  where, u is the velocity compo-
nent in the x-cordinate direction, î  is the unit vector in 
x-direction. x-and y-axes are chosen along and perpen-
dicular to the plates respectively. 

Let us consider the dimensionless variables: 
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where, “U” and “d” respectively denote the steady veloc-
ity of the moving plate and the distance between the 
plates. 

Thus, the governing Equation (10) in nondimensional 
variables is given by: 
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For simplicity, neglecting “*” mark, we get the gov-
erning equation in terms of nondimensional variables as 
follows: 
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We suppose that an incompressible viscoelastic fluid is 
bounded by two infinite parallel plates, at a distance “d” 
apart. The x-axis is taken in the direction of the plates 
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and y-axis is taken vertically upward. The plate at y = 0 is 
initially at rest and suddenly brought to the steady veloc-
ity “U” and then plate at y = d is always at rest. 

Equation of motion of viscoelastic fluid is given by 
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Initial conditions are given by  
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Boundary conditions in terms of non-dimensional 
variables can be written as 
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Now we introduce a transformation for variable u to v 
given by 

     , , 1v y t u y t y    for t > 0 

Then Equation (11) transform to 
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The initial condition is reduced to 

 ,0 1v y y   

and the boundary conditions are given by 

   0, 0, 1, 0v t v t   

Now multiplying both sides of Equation (12) by sin 
(nπy) and then integrating with respect to y from 0 to 1 
and using boundary conditions we get,  
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where,      
1
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, , sin π dsV n t v y t n y y  is the finite Fourier  

sine transformation of  ,v y t and 1,2,3, .n    
Taking Laplace transformation of both sides of Equa-

tion (13) and using  ,0 1 πsV n n   we get, 
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where  ,sV n p  is the Laplace transformation of 
 ,sV n t  with respect to t and p is the Laplace transform 

parameter. 
In order to avoid the lengthy procedure of residues and 

contour integrals, we rewrite Equation (14) into series 
form 
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Now we have an important Laplace transformation of 
the nth order derivative of Mittage-Leffler function 
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where,  ,E z   is the Mittag-Leffler function.  

     

 
 

, ,

0

d

d

!
           

!

n
n

n

j

j

E z E z
n

j n z

j j n

   

  










  
 

Taking discrete inverse Laplace transformation of 
Equation (15) we get 

   
 

     

2 1 1
0 , 0

1 1
, 1

11 1
,

π ! !π

k
m l k

m
s k k

k m lr

k m k k
m k r

V n t
n m ln

t E t  
  






  

 
 

   
  


  

 

 
 (17) 

Taking discrete inverse finite Fourier sine transforma-
tion of the above equation we get, 
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Changing the variable  ,v y t  to  ,u y t  by the 
transformation      , , 1u y t v y t y   , we get the ex-
pression for the velocity field as follows, 
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Problem 2: Flow between two infinite parallel plates 
in which upper plate oscillates and the lower plate being 
at rest. 

Let us suppose that the distance between the two plates 
is “d”. The upper plate at y = d oscillates with dimen-
sionless velocity  cos t  and the lower plate at y = 0 is 
at rest, where ω is the dimensionless frequency of the 
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upper plate. 
The governing equation is of the form given below 
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where α, γ are the fractional parameters. 
Initial condition is given by 

 , 0,0 1, 0u y t y t     

Boundary conditions in term of dimensionless vari-
ables are given by  

       0, 0, 1, cos 0u t u t t t    

Now multiplying both sides of Equation (20) by 
sin(nπy) and then integrating with respect to y from 0 to 1 
and using the boundary conditions we get, 
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where  ,sU n t  is the finite Fourier sine transformation 
of u(y,t). Now taking the Laplace transformation of the 
above equation and using  ,0 0sU n   we get  
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where  ,sU n p  is the Laplace transformation of 
 ,sU n t  and “p” is the Laplace transform parameter. 

Now in order to avoid the lengthy procedure of resi-
dues and contour integrals, we rewrite the above equation 
into series form 
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Taking the discrete inverse Laplace transform of the 
above equation we obtain, 
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where      
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the Pochhammer polynomial. 

Now taking discrete inverse finite Fourier Sine trans-
formation we get from Equation (22) the velocity field as 
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3. Limiting Cases 

Case 1: If 0.0  , 0.0r  , then the equation of 
motion and the boundary conditions are: 
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with boundary conditions: u(0, t) = 1, u(1, t) = 0, for t > 0 
for the Problem 1 and u(0, t) = 0, u(1, t) = cos(ωt) for t > 
0 for the Problem 2. 

The Equation (24) represents the governing equation 
for a classical Newtonian fluid. 

Case 2: If γ ≠ 0, 0r  , the solutions for a general-
ised Maxwell fluid is recovered from the solutions given 
by the Equations (18) and (23). 

Case 3: If α ≠ 0, λ→0, then the equation the equation 
of motion is 

     2

2

, ,
1 r t

u y t u y t
D

t y


 
 

 
    (25) 

with boundary conditions: u(0, t) = 1, u(1, t) = 0, t > 0 for 
the Problem 1 and u(0, t) = 0, u(1, t) = cos(ωt), t > 0 for 
the Problem 2 Equation (25) represents the governing 
equation for a Generalised Second Grade fluid. 

Case 4: If 1.0  , 0r  , the solutions for an or-
dinary Oldroyed-B fluid is recovered from the solutions 
given by the Equations (18) and (23). 

4. Conclusions and Numerical Results 

In this paper we have presented some unsteady incom- 
pressible flow of a generalized Oldroyed-B fluid between 
two infinite parallel plates in two different problems. 
Exact analytical solutions are obtained for the velocity 
fields by means of Laplace and finite Fourier sine trans- 
formations in series form in terms of Mittag-Leffler func- 
tion  ,E z   and generalised function,  , , ,a bG d t . In 
the constitutive model, the time derivative of integer or- 



D. BOSE, U. BASU 

Copyright © 2013 SciRes.                                                                                 WJM 

150 

der is replaced by Riemann-Liouville operator given by 
Equation (4). The four limiting cases of the general solu- 
tions have been discussed in the paper. The diagrams 
have been drawn against t for different values of the frac- 
tional parameters α and γ. The influence of the fractional 
parameters upon the velocity field has been discussed 
graphically. 

1) Problem 1  
In Figure 1 the velocity is depicted against the dis- 

tance from the lower plate. The fluid velocity increases 
in the region between the widths y = 0.0 and 0.8 with the 
increase in time. The velocity curves are smooth in char-
acter. The velocity profile has some deviation from 
parabolic pattern depending on the time t. In Figure 1 
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Figure 1. The velocity is depicted against the distance from 
the lower plate. λr = 3, λ = 5, α = 0.2, γ = 0.8. 
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Figure 2. The velocity is depicted against time with different 
values of fractional parameter γ. y = 0.1, λr = 3, λ = 5, α = 
0.2. 

we have a point of local minimum value in the velocity 
curve of t = 2, because the velocity gradient at that 
point(near the midway of the two parallel plates) is zero.  

In Figure 2 we can see the dependency of the velocity 
profile on the fractional parameter γ. As the value of the 
parameter γ increases, the fluid velocity decreases with 
time near the lower plate and as the time progresses the 
fluid flow increases with the increase of value of γ near 
the lower plate. In Figure 3 the velocity field has been 
depicted against time with different values of fractional 
parameter α. The Figure shows the dependency of the 
velocity field on the fractional parameter α. The flow 
velocity increases with the increasing values of the frac-  

 

 

Figure 3. The velocity is depicted against time with different 
values of fractional parameter α. y = 0.1, λr = 3, λ = 5, γ = 
0.8. 
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Figure 4. The velocity is depicted against time near the up-
per plate with different values of fractional parameter, α. ω 
= 0.2, λr = 5, λ = 3, γ = 0.8, y = 0.9.       : α = 0. 2; _____: α 
= 0.4. 
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Figure 5. The velocity is depicted against time for two cases. 
1) Classical newtonian fluid; 2) Generalised Maxwell fluid. 
1) ω = 0.2, λr = 0.0001, λ = 3, α = 0.0, γ = 0.8, y = 0.8. Classi-
cal newtonian fluid _ _ _ _ _; 2) ω = 0.2, λr = 0.0001, λ = 3, α 
= 0.2, γ = 0.8, y = 0.8, generalised maxwell fluid ___ ____. 
 
tional parameter α. In all the cases, the velocity increases 
with the increase in time.  

2) Problem 2  
In Figure 4 the velocity is plotted against time, t for 

different values of fractional parameter, α. The fluid ve-
locity decreases with the increasing values of parameter 
α. For different values of α, the central line of the oscilla-
tion is deviating from the horizontal line with respect to 
time in Figure 4. This effect is seen after lapse of long 
time. In Figure 5, the velocity is depicted against time 
for two cases: Case 1, classical Newtonian fluid; and 
Case 2, generalised Maxwell fluid for the Problem 2. In 
Case 1, , 0r    and in Case 2 0r  ,  ≠ 0. 

From Figure 5, it can be concluded that the velocity 
curves in both the cases are oscillatery in nature and the 
fluid velocity for Classical Newtonian fluid decreases 
negatively with oscillation compare to the flow for Gen-
eralised Maxwell fluid near the upper plate. The central 
lines of oscillation for both the cases shift downwards the 
time axis. 
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