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Abstract

Many studies have highlighted the difficulty inherent to the clinical application of fundamen-

tal neuroscience knowledge based on machine learning techniques. It is difficult to general-

ize machine learning brain markers to the data acquired from independent imaging sites,

mainly due to large site differences in functional magnetic resonance imaging. We address

the difficulty of finding a generalizable marker of major depressive disorder (MDD) that

would distinguish patients from healthy controls based on resting-state functional connectiv-

ity patterns. For the discovery dataset with 713 participants from 4 imaging sites, we

removed site differences using our recently developed harmonization method and devel-

oped a machine learning MDD classifier. The classifier achieved an approximately 70%

generalization accuracy for an independent validation dataset with 521 participants from 5

different imaging sites. The successful generalization to a perfectly independent dataset

acquired from multiple imaging sites is novel and ensures scientific reproducibility and clini-

cal applicability.
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Introduction

Major depressive disorder (MDD) is a highly heterogeneous psychiatric disorder, and a lump-

ing approach that treats MDD as a single entity has been criticized since early 2000 [1,2]. Such

heterogeneity in psychiatric disorders has motivated the Research Domain Criteria (RDoC)

initiative, which aims to redefine and identify subtypes of psychiatric disorders in terms of bio-

logical systems, without relying on a diagnosis based solely on symptoms and signs [3]. This

initiative is expected to inform our understanding of heterogeneous and overlapping clinical

presentations of psychotic disorders [4–7]. In particular, resting-state functional magnetic res-

onance imaging (rs-fMRI) is a useful modality to this end because it enables us to noninva-

sively investigate whole brain functional connectivity (FC) in diverse patient populations [8,9].

rs-fMRI allows for the quantification of the FC of correlated, spontaneous blood-oxygen-

level–dependent (BOLD) signal fluctuations [10]. Machine learning algorithms have emerged

as powerful tools for the analysis of a large number of FCs (usually between 10,000 and

100,000 for an individual). According to the original idea of the RDoC initiative, subtyping

and redefining psychiatric disorders should be based on solely biological and cognitive mea-

surements (FCs in the current context) without relying on traditional symptom-based catego-

ries [11–13]. An unsupervised learning technique is the first candidate for this data-driven

approach. However, the number of explanatory variables, FCs, is huge (10,000 to 100,000),

while the sample size, i.e., the number of participants, usually ranges between 100 and 1,000.

Thus, overfitting to noise in the data by machine learning algorithms and the resultant infla-

tion of prediction performance can easily occur [12,14,15]. This situation makes it difficult to

directly apply an unsupervised learning algorithm to FC data.

To address this problem and successfully subtype and redefine psychiatric disorders, we

proposed the following hierarchical supervised/unsupervised approach, which was shown to

have been partially successful in several studies [16–18]. First, we identified a relatively small

number of FCs that reliably distinguish healthy controls (HCs) and patients with psychiatric

disorders using a supervised learning algorithm. Our purpose at this stage is to find potentially

relevant biological dimensions to psychiatric disorders. Thus, lumping categories such as

“MDD” as a single entity may provide useful information with supervised learning to search

for relevant biological dimensions. We can use the identified FCs not only for a brain network

biomarker of the psychiatric disorder but also for biologically meaningful dimensions related

to the disorder. Second, we applied unsupervised learning to these low biological dimensions

to redefine and find subtypes of psychiatric disorders. For instance, we were able to achieve

subtyping of MDD by locating patients with MDD in these dimensions [19]. Furthermore,

locating different psychiatric disorders (e.g., MDD, schizophrenia [SCZ], and autism spectrum

disorder [ASD]) in these dimensions may reveal the relationships among the disorders (multi-

disorder spectrum) [16–18]. As such, although our approach starts with supervised learning

based on a lumping category such as a diagnosis, such category is only used as a single piece of

information to recruit relevant FCs to psychiatric disorders. Our final goal is to understand

psychiatric disorders in the biological dimensions while avoiding overfitting to noise in the

discovery dataset and ensuring generalization performance for the independent data in

completely different multiple imaging sites.

Whether a brain network marker constructed in the first stage generalizes to the data

acquired from multiple completely different imaging sites is a crucial issue for the above hier-

archical supervised/unsupervised approach [20–22]. However, an increasing number of stud-

ies have highlighted the difficulty in generalization of the brain network marker to the data

acquired from multiple completely independent imaging sites, even using the supervised

learning method [14,23]. For example, in a recent paper by Drysdale, which is one of the most
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successful brain network markers of MDD, the classification accuracy for MDD in completely

independent imaging sites was 68.8% for 16 patients from 1 site, which represents only 3% of

the validation cohort ([12]).

Here, we targeted MDD, the world’s most serious psychiatric disorder in terms of its social

repercussions [24,25]. To achieve the final goal (redefinition and subtyping), it is an abso-

lutely necessary prerequisite to first treat MDD as a single entity using diagnoses as super-

vised data and create the brain network marker that generalizes to a completely independent

data collected from multiple imaging sites. We considered and satisfied 3 issues and condi-

tions to ensure generalization of our network marker of MDD to the independent validation

dataset, which does not include imaging sites of the discovery dataset. First, we used our

recently developed harmonization method, which could reduce site differences in FC [26].

According to our recent study, the differences in resting-state FCs for different imaging sites

consist of measurement bias due to differences in fMRI protocols and MR scanners and sam-

pling bias due to recruitment of different participant populations. The magnitude of the

measurement bias was larger than the effects of disorders including MDD, and the magni-

tude of the sampling bias was comparable with the effects of disorders [26]. Therefore, a

reduction in the site difference in FC is essential for the generalization of network models in

the validation dataset. Second, we validated our network marker using a perfectly indepen-

dent and large cohort collected from multiple completely different imaging sites. Specifically,

for constructing a brain network marker, we used an rs-fMRI discovery dataset with 713 par-

ticipants (149 patients with MDD) from 4 imaging sites (Center of Innovation in Hiroshima

University (COI), Kyoto University (KUT), Showa University (SWA), and University of

Tokyo (UTO)). This discovery dataset was collected by a Japanese nationwide database proj-

ect called the Strategic Research Program for Brain Science (SRPBS, https://bicr.atr.jp/

decnefpro/) since 2014. After constructing the brain network marker, we examined generali-

zation of the network marker to an independent validation dataset with 449 participants

(185 patients with MDD) from 4 different imaging sites (Hiroshima Kajikawa Hospital

[HKH], Hiroshima Rehabilitation Center [HRC], Hiroshima University Hospital [HUH],

and Yamaguchi University [UYA]). This validation dataset was formed after the construc-

tion of the network marker and was acquired for other projects since 2008 independently of

the SRPBS. We further assessed the generalization performance to the data collected from a

country other than Japan by using publicly available rs-fMRI dataset with 72 participants (51

patients with MDD) from OpenNeuro (https://openneuro.org/datasets/ds002748/versions/

1.0.0). Furthermore, we used another dataset of 75 HCs, 154 patients with SCZ, and 121

patients with ASD to investigate the multi-disorder spectrum. In total, we used 1,584 partici-

pants’ data in this study. Furthermore, unlike previous studies that restricted the subtype of

MDD [12,16], we targeted all patients with MDD without restricting according to the depres-

sion subtype in order to enable future subtyping in the biological dimensions, which is

beyond the purpose of the current paper. Third, we carefully avoided overfitting noise in the

discovery dataset. As explained above, the number of explanatory variables is typically larger

than the sample size in the rs-fMRI study; thus, overfitting to noise in the discovery dataset

by machine learning algorithms and resultant inflation of prediction performance can hap-

pen easily unless special precautions are taken. We used a sparse machine learning algorithm

with the least absolute shrinkage and selection operator (LASSO) to avoid overfitting to

noise and selected only essential FCs [27]. As a result, for the first time, to our knowledge, we

developed a generalizable brain network marker for MDD without restricting to certain sub-

types such as treatment-resistant or melancholic MDD.

Previous studies have shown that a diagnosis of MDD based on the Diagnostic and Statisti-

cal Manual of Mental Disorders (DSM) has a low inter-rater agreement (kappa = 0.28) [28,29].
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In this study, we have developed a brain network marker that can objectively predict a diagno-

sis from structured interviews, which have relatively high inter-rater agreement, such as the

Structured Clinical Interview for DSM (SCID) (kappa = 0.64~0.74) [30,31] or the Mini-Inter-

national Neuropsychiatric Interview (high agreement with SCID: kappa = 0.85) [32]. To objec-

tively compare and verify the stability of the diagnoses based on DSM and brain FC, we

performed a simulation. Our simulation will show that our brain network marker of MDD

may more objectively and stably diagnose MDD than a diagnosis based on DSM even if we

considered the variance across multiple scans, different fMRI scanners, and different imaging

sites. Of note, although previous studies suggest that it is especially difficult to make a diagnosis

that differentiates MDD from bipolar disorder [33], it is relatively straightforward for an expe-

rienced clinician to distinguish between MDD and healthy status in clinical practice. There-

fore, the utility of the rs-fMRI-based brain network marker is to understand underlying

pathophysiological mechanisms of the illness and to guide treatment choice and the future

development of novel interventions for a given disorder.

Results

Datasets

We used 2 rs-fMRI datasets for the analyses. The “discovery dataset” contained data from 713

participants (564 HCs from 4 sites, 149 patients with MDD from 3 sites; Table 1), and the

“independent validation dataset” contained data from 521 participants (285 HCs and 236

patients with MDD from 5 independent sites; Table 1). Most data utilized in this study can be

downloaded publicly from the DecNef Project Brain Data Repository (https://bicr-resource.

atr.jp/srpbsopen/ and https://bicr.atr.jp/dcn/en/download/harmonization/) and OpenNeuro

(https://openneuro.org/datasets/ds002748/versions/1.0.0). The imaging protocols and data

availability statement of each site is described in S1 Table. Depression symptoms were evalu-

ated using the Beck Depression Inventory-II (BDI-II) score obtained from most participants

in each dataset. Clinical details such as medication information and the presence of comorbid-

ities in patients with MDD are described in S2 Table.

Site difference control in FC

Classical preprocessing was performed, and FC was defined based on a functional brain atlas

consisting of 379 nodes (regions) covering the whole brain [34]. The Fisher’s z-transformed

Pearson correlation coefficients between the preprocessed BOLD signal time courses of each

possible pair of nodes were calculated and used to construct 379 × 379 symmetrical connectiv-

ity matrices in which each element represents a connection strength, or edge, between 2

nodes. We used 71,631 connectivity values (379 × 378/2) of the lower triangular matrix of the

connectivity matrix. To control for site differences in the FC, we applied a traveling subject

harmonization method to the discovery dataset [26]. In this method, the measurement bias

(the influence of the difference in the properties of MRI scanners, such as the imaging parame-

ters, field strength, MRI manufacturer, and scanner model) was estimated by fitting the regres-

sion model to the FC values of all participants from the discovery dataset and the traveling

subject dataset, wherein multiple participants travel to multiple sites to assess measurement

bias (see Control of site differences in the Materials and methods section). This method

enabled us to subtract only the measurement bias while leaving important information due to

differences in subjects among imaging sites. We applied the ComBat harmonization method

[35–38] to control for site differences in the FC of the independent validation dataset because

we did not have a traveling subject dataset for those sites.
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Reproducible FCs related to MDD diagnosis

Using a simple mass univariate analysis, we first investigated the reproducibility of the effect

size by diagnosis on individual FC across the discovery and validation datasets. For the effect

of the diagnosis on each FC, we calculated the difference in the FC value between the HCs and

the MDDs (t-value). Fig 1 shows the diagnosis effect size for the discovery dataset in the

abscissa and that for the validation dataset in the ordinate for each FC. To statistically evaluate

the reproducibility of the effect on FCs, we calculated the Pearson’s correlation of the effect

sizes (t-values) between the discovery and validation datasets. We compared this Pearson’s

correlation value with the distributions of the Pearson’s correlation in the shuffled data in

which diagnosis labels were permuted across subjects (permutation test). We found a signifi-

cant correlation between the 2 datasets (r(71,631) = 0.494, 95% confidence interval (CI) = [0.488

0.499], R2 = 0.24, [permutation test, P< 0.001, 1-sided]). This result indicates that resting-

state FCs contain consistent information regarding MDD diagnosis across the 2 datasets, even

if the 2 datasets were acquired from completely different sites.

Table 1. Demographic characteristics of participants in both datasets.

Site HC MDD All

Number Male/

Female

Age (y) BDI Number Male/

Female

Age (y) BDI Number Male/

Female

Age (y) BDI

Discovery dataset

Center of Innovation in

Hiroshima University

(COI)

124 46/78 51.9 ± 13.4 8.2 ± 6.3 70 31/39 45.0 ± 12.5 26.2 ± 9.9 194 77/117 49.4 ± 13.5 14.7 ± 11.7

Kyoto University

(KUT)

169 100/69 35.9 ± 13.6 6.0 ± 5.4 17 11/6 43.9 ± 13.3 27.7 ± 10.1 186 111/75 36.7 ± 13.7 8.3 ± 9.1

Showa University

(SWA)

101 86/15 28.4 ± 7.9 4.4 ± 3.8 0 - - - 101 86/15 28.4 ± 7.9 4.4 ± 3.8

University of Tokyo

(UTO)

170 78/92 35.6 ± 17.5 6.7 ± 6.5 62 36/26 38.7± 11.6 20.4 ± 11.4 232 114/118 36.4 ± 16.2 14.5 ± 11.8

Summary 564 310/254 38.0 ± 16.1 6.3 ± 5.6 149 78/71 42.3 ± 12.5 24.9 ± 10.7 713 388/325 38.9 ±15.5 10.7 ± 10.6

Independent validation dataset

Hiroshima Kajikawa

Hospital

(HKH)

29 12/17 45.4 ± 9.5 5.1 ± 4.6 33 20/13 44.8 ± 11.5 28.5 ± 8.7 62 32/30 45.1 ± 10.5 17.6 ± 13.7

Hiroshima

Rehabilitation Center

(HRC)

49 13/36 41.7 ± 11.7 9.1 ± 8.5 16 6/10 40.5 ± 11.5 35.3 ± 9.5 65 19/46 41.4 ± 11.5 15.6 ± 14.3

Hiroshima University

Hospital

(HUH)

66 29/37 34.6 ± 13.0 6.9 ± 5.9 57 32/25 43.3 ± 12.2 30.9 ± 9.0 123 61/62 38.6 ± 13.3 18.0 ± 14.1

Yamaguchi University

(UYA)

120 50/70 45.9 ± 19.5 7.1 ± 5.6 79 36/43 50.3 ± 13.6 29.7 ± 10.7 199 86/113 47.6 ± 17.5 16.0 ± 13.6

Summary 264 104/160 42.2 ± 16.5 7.2 ± 6.3 185 94/91 46.3 ± 13.0 30.3 ± 9.9 449 198/251 43.9 ± 15.3 16.7 ± 13.9

OpenNeuro dataset

OTHER 21 6/15 33.8±8.49 - 51 13/38 32.7±8.94 - 72 19/53 33.1±8.73 -

Demographic distribution of sex rate was matched between the MDD and HC populations in the discovery dataset (P > 0.05) but not for age or BDI (P < 0.05). All

demographic distributions were not matched between the MDD and HC populations in the independent validation dataset (P < 0.05). The link to OpenNeuro dataset is

https://openneuro.org/datasets/ds002748/versions/1.0.0

BDI, Beck Depression Inventory-II; HC, healthy control; MDD, major depressive disorder.

https://doi.org/10.1371/journal.pbio.3000966.t001
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Brain network marker of MDD diagnosis generalized to MDD data

obtained from completely different multi-sites

We constructed a brain network marker for MDD, which distinguished between HCs and

MDD patients, using the discovery dataset based on 71,631 FC values. Based on our previous

studies [16–18,39], we assumed that psychiatric disorder factors were not associated with

whole brain connectivity, but rather with a specific subset of connections. Therefore, we used

logistic regression with LASSO, a sparse machine learning algorithm, to select the optimal sub-

set of FCs [40]. We have already succeeded in constructing generalizable brain network mark-

ers of ASD, melancholic MDD, SCZ, and obsessive compulsive disorder [16–18,39] by using a

similar sparse estimation method that automatically selects the most important connections.

We also tried a support vector machine (SVM) for classification instead of LASSO. However,

the performance was not improved compared with that with LASSO (S1 Text).

To estimate the weights of logistic regression and a hyperparameter that determines how

many FCs were used, we conducted a nested cross-validation procedure (Fig 2) (see Con-

structing the MDD classifier using the discovery dataset in the Materials and methods section).

We first divided the whole discovery dataset into the training set (9 folds out of 10 folds),

which was used for training a model, and the test set (1 fold out of 10 folds), which was used

for testing the model. To avoid bias due to the difference in the number of patients with MDD

Fig 1. Results of mass univariate analysis. Reproducibility across the 2 datasets regarding diagnosis effects. Scatter

plot and histograms of the diagnosis effect size (the difference in mean functional connectivity strengths between

patients with depression and healthy groups: t-value). Each point in the scatter plot represents the diagnosis effect in

the discovery dataset in the abscissa and that for the independent validation dataset in the ordinate for each functional

connectivity. The original data is in black, while the shuffled data in which subject information was permuted is in

gray. The numerical data used in this figure are included in S1 Data.

https://doi.org/10.1371/journal.pbio.3000966.g001
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and HCs, we used an undersampling method for equalizing the numbers between the MDD

and HC groups [41]. Since only a subset of training data is used after undersampling, we

repeated the random sampling procedure 10 times (i.e., subsampling). When we performed

undersampling and subsampling procedures, we matched the mean age between MDD and

HC groups in each subsample. We then fitted a model to each subsample while tuning a regu-

larization parameter in an inner loop of nested cross validation, resulting in 10 classifiers. The

mean classifier-output value (diagnostic probability) was considered indicative of the classifier

output. Diagnostic probability values of>0.5 were considered to be indicative of an MDD

Fig 2. Schematic representation of the procedure for training the MDD classifier and evaluation of predictive power. The MDD

classifier was constructed using a nested cross-validation procedure in the discovery dataset. We also used undersampling and

subsampling techniques. Generalization performances were evaluated by applying the constructed classifiers to the independent

validation dataset. The machine learning classifiers are represented by PC cartoons. CV, cross-validation; HC, healthy control; MDD,

major depressive disorder.

https://doi.org/10.1371/journal.pbio.3000966.g002
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diagnosis. We calculated the area under the curve (AUC), accuracy, sensitivity, specificity, pos-

itive predictive value (PPV), and negative predictive value (NPV). Furthermore, we evaluated

the classifier performance for the unbalanced dataset using the Matthews correlation coeffi-

cient (MCC) [42,43], which takes into account the ratio of the confusion matrix size.

The classifier distinguished MDD and HC populations with an accuracy of 66% in the dis-

covery dataset. The corresponding AUC was 0.74, indicating acceptable discriminatory ability.

Fig 3A shows that the 2 diagnostic probability distributions of the MDD and HC populations

were clearly separated by the 0.5 threshold (right, MDD; left, HC) for the discovery dataset.

The sensitivity, specificity, PPV, and NPV were 72%, 65%, 0.34, and 0.90, respectively. This

classifier led to an acceptable MCC of 0.30. We found that acceptable classification accuracy

was achieved for the full dataset as well as for the individual datasets from 3 of the imaging

sites (Fig 3B) to similar degrees. Only HC individuals were identified in the SWA dataset; how-

ever, notably, its probability distribution was comparable to the HC populations at other sites.

We tested the generalizability of the classifier using an independent validation dataset. We

created 100 classifiers of MDD (10-fold × 10 subsamples); therefore, we applied all trained

classifiers to the independent validation dataset. Next, we averaged the 100 outputs (diagnostic

probability) for each participant and considered the participant as a patient with MDD if the

averaged diagnostic probability value was >0.5. The classifier distinguished the MDD and HC

populations with an accuracy of 66% in the independent validation dataset. If the accuracy for

the validation dataset is much smaller than that of the discovery dataset, overfitting is strongly

suggested, and the reproducibility of the results is put into doubt. In our case, 66% accuracy

for the validation dataset was actually same with 66% accuracy for the discovery dataset, and

this concern does not apply. The corresponding AUC was 0.74 (permutation test, P< 0.01,

1-sided), indicating an acceptable discriminatory ability. Fig 3C shows that the 2 diagnostic

probability distributions of the MDD and HC populations were clearly separated by the 0.5

threshold (right, MDD; left, HC). The sensitivity, specificity, PPV, and NPV were 72%, 61%,

0.60, and 0.73, respectively. This approach led to an acceptable MCC of 0.33 (permutation test,

P< 0.01, 1-sided). In addition, acceptable classification accuracy was achieved for the individ-

ual datasets of the 5 imaging sites (Fig 3D).

To investigate whether our classifier can be generalized to milder depression, we applied

our classifier to patients with MDD with low BDI scores (score� 20, n = 30) in the indepen-

dent validation dataset. As a result, 21 of the 30 patients were correctly classified as having

MDD (accuracy of 70%), a similar performance level to when the classifier was applied to all

patients with MDD. In addition, we assessed whether the proportion of antidepressants, anxio-

lytics, antipsychotics, and mood stabilizers used in the milder group and severe group were

statistically different. We found that the milder group used significantly lesser antidepressants

than the severe group (antidepressant: milder = 19/30, severe = 124/155, z = 2.00, P = 0.046;

anxiolytic: milder = 10/30, severe = 65/155, z = 0.88, P> 0.38; antipsychotic: milder = 9/30,

severe = 33/155, z = 1.04, P> 0.3; mood stabilizer: milder = 1/30, severe = 13/155, z = 0.96,

P> 0.34). Since we confirmed that there was no significant difference in the classification per-

formance between the 2 groups, these results suggest that our brain network marker is not

derived from the effects of different doses of antidepressants on brain circuits. Moreover, all

patients with MDD at the KUT imaging site, which is included in the discovery dataset, were

treatment resistant (treatment-resistant depression: adequate use of 2 or more antidepressants

for 4 to 6 weeks is not efficacious, or intolerance to 2 or more antidepressants exists). We cal-

culated the classification accuracy only at KUT and obtained the same performance level

(accuracy = 71%). These results suggest that the current MDD classifier can be generalized to

milder depression, as well as to treatment-resistant patients with MDD.
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Fig 3. MDD classifier performances in both datasets. (a) The probability distribution for the diagnosis of MDD in the discovery dataset and (b) probability

distributions for each imaging site. MDD and HC distributions are depicted in red and blue, respectively. (c) The probability distribution for the diagnosis of

MDD in the independent validation dataset and (d) probability distributions for each imaging site. MDD and HC distributions are depicted in red and blue,

respectively. The numerical data used in this figure are included in S1 Data. AUC, area under the curve; COI, Center of Innovation in Hiroshima University;

HC, healthy control; HKH, Hiroshima Kajikawa Hospital; HRC, Hiroshima Rehabilitation Center; HUH, Hiroshima University Hospital; KUT, Kyoto

University; MCC, Matthews correlation coefficient; MDD, major depressive disorder; NPV, negative predictive value; PPV, positive predictive value; SWA,

Showa University; UTO, University of Tokyo; UYA, Yamaguchi University. OTHER, the data from OpenNeuro (https://openneuro.org/datasets/ds002748/

versions/1.0.0).

https://doi.org/10.1371/journal.pbio.3000966.g003
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Furthermore, we investigated the correlation between the classifier’s output (probability of

depression) and depressive symptoms (BDI score). We found significant correlations in both

the discovery dataset and validation dataset (discovery dataset: r = 0.29, P< 1.0×10−10, valida-

tion dataset: r = 0.32, P< 1.0×10−11). However, we were not able to find consistently signifi-

cant correlations within each group (HC and MDD groups) in both datasets (discovery

dataset: MDD [r = −0.07, P = 0.46], HC [r = 0.13, P = 0.010]; validation dataset: MDD

[r = 0.0043, P = 0.95], HC [r = −0.13, P = 0.04]).

To rule out the possibility that the classifier’s performance is driven by age, we constructed

our brain network marker using the datasets in which the mean age was matched between

MDD and HC groups. We further assessed whether we can predict classifier scores (probabil-

ity of depression) based on age, sex, and the amount of motion (frame-wise displacement

[FD]) or the combination of head movement parameters (x, y, z, yaw, pitch, and roll), respec-

tively [44]. As a result, we confirmed that we could not predict classifier scores based on age,

sex, and the amount of motion (FD) or the combination of head movement parameters (S2

Text and S1 Fig). These results indicate that the classifier’s performance was unlikely to have

been driven by confounds.

Regarding the effectiveness of the developed network marker, although discriminability

was acceptable (AUC = 0.74) in the independent validation dataset, the performance of the

PPV was low in the discovery dataset (0.34). This occurred because the number of patients

with MDD was much smaller than that of HCs (about 4 times as many HCs as MDDs) in the

discovery dataset. By contrast, in the independent validation dataset, in which the number of

HCs was about 1.5 times as high as the number of MDDs, the PPV, at 0.60, was acceptable.

When applying a developed network marker in clinical practice, we assume this marker to be

applied to those who actually visit the hospital. Therefore, the actual PPV will be acceptable in

clinical practice because the prevalence of MDD may be relatively higher compared with the

prevalence of MDD in the general population. Furthermore, in the independent validation

dataset, when we divided the dataset into low- and high-risk groups based on the cutoff value

(probability of MDD being 0.52) determined in the discovery dataset [45], the odds (sensitiv-

ity/1 − sensitivity) were 1.92 in the high-risk group. Moreover, the odds ratio was 4.95 when

the odds in the low group were set to 1. That is, the output of the classifier (probability of

MDD) will be useful information for psychiatrists as a physical measure supplementing

patients’ symptoms and signs in order to make a diagnosis. We checked the stability of our

developed network marker to assess whether the same subject was consistently classified into

the same class when the subject was scanned multiple times at various imaging sites. We

applied our marker to a traveling subject dataset in which 9 healthy participants (all male par-

ticipants; age range, 24 to 32 years; mean age, 27 ± 2.6 years) were scanned about 50 times at

12 different sites, producing a total of 411 scans (S3 Table). We achieved a high accuracy in

this dataset (mean accuracy = 84.5, 1SD = 12.8, across participants). This result indicates that

our developed network marker has high stability even if the same subject is scanned multiple

times at various imaging sites.

To objectively compare and verify the stability of diagnosis by our brain network marker

with that of the diagnosis by clinicians based on the DSM, we performed a new simulation. In

this simulation, we prepared a surrogate set of 1,000 participants who have a “true” probability

of depression (0 < p(MDD)< 1). In reality, we used the classifier’s outputs for real patients

from our datasets as the true probability. We assumed that the rater’s noise (N(0, S)) was

added to the probability of depression (p̂ðMDDÞ), and a participant with p̂ðMDDÞ = 0.5 or

more was diagnosed with MDD. By assuming 2 raters, we can calculate a diagnostic agreement

rate between these 2 raters’ diagnoses (kappa). Based on this simulation, we estimated the rat-

er’s variance S = 0.0149 when kappa is 0.28 [28,29]. Next, we assessed the variance of our
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classifier’s output across imaging sites. We applied our classifier to a traveling subject dataset.

We evaluated the inter-rater variance of our classifier’s output assuming that each MRI scan-

ner was a rater. We estimated whole-variance (variance across all about 50 scans), between-

sites-variance (we calculated the average of 2 or 3 scans per imaging site and then took the var-

iance across the average values), and within-site-variance (variance across 15 scans at 1 imag-

ing site) in each participant. As a result, the whole-variance was 0.0061, the between-sites-

variance was 0.0037, and the within-site-variance was 0.0055 averaged across participants.

These values were about 25%~40% of the variance between clinicians in the above simulation.

These results indicate that the diagnosis by our brain network marker could be more objective

and stable than the diagnosis by clinicians, even considering the variance across fMRI scanners

and imaging sites.

To assess the effects of harmonization, we compared prediction performances and the

number of selected FCs among brain network markers constructed with harmonization and

without harmonization for the discovery dataset and the independent validation dataset,

respectively. As a result, we found significant improvements in the prediction performance by

harmonization for the independent validation dataset, but not by harmonization for the dis-

covery dataset (S3 Text, S4 Table, and S2 Fig). One possible explanation for which the harmo-

nization for the discovery dataset did not improve the classification performance was that the

site effect may have been sufficiently small in the discovery dataset since the discovery dataset

was acquired using a unified imaging protocol. However, this was not the case in the validation

dataset. A detailed analysis on how classification performance with/without harmonization

depends on the size and patterns of the site and disease difference would make for an interest-

ing future research topic. On the other hand, the number of selected FCs was the largest for

traveling subject harmonization (25 FCs), compared with 23 and 21 without harmonization

and ComBat, respectively (we explained how to select important FCs for MDD diagnosis in

important FCs for MDD diagnosis in the Results section) (S3 Text, S4 Table, and S2 Fig). This

suggests that we could extract more brain circuit information with regard to MDD from the

data by the traveling subject harmonization.

We investigated whether the discrimination performances were different across imaging

sites in the independent validation dataset. We calculated the 95% confidence intervals (CIs)

of the discrimination performances (AUC, accuracy, sensitivity, and specificity) using a boot-

strap method for every imaging site. We repeated the bootstrap procedure 1,000 times and cal-

culated the 95% CI for each site. We then checked whether there was a site whose CI did not

overlap with the CIs of other imaging sites. We were unable to find such an imaging site, sug-

gesting no significant systematic difference (S4 Text and S3 Fig). We further assessed the pre-

diction performance when we used a parcellation scheme other than Glasser’s region of

interest (ROI). We found that there was no large difference in the prediction performance

dependent on ROI numbers or parcellation schemes (S5 Text and S4 Fig).

Important FCs for MDD diagnosis

We examined important resting-state FCs for an MDD diagnosis. Briefly, we counted the

number of times an FC was selected by LASSO during the 10-fold cross-validation (CV). We

considered this FC to be important if this number was significantly higher than the threshold

for randomness, according to a permutation test. We permuted the diagnostic labels of the dis-

covery dataset and conducted a 10-fold CV and 10-subsampling procedure, and we repeated

this permutation procedure 100 times. We then used the number of counts for each connec-

tion selected by the sparse algorithm during 10 subsamplings × 10-fold CV (max 100 times) as

a statistic in every permutation dataset. To control for the multiple comparison problem, we
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set a null distribution as the max distribution of the number of counts over all FCs and set our

statistical significance to a certain threshold (permutation test, P< 0.05, 1-sided).

Fig 4A shows the spatial distribution of the 25 FCs that were automatically and unbiasedly

identified from the data for the reliable classification of MDD and HC by the machine learning

algorithms. We hereafter summarize the characteristics of these FCs. (1) The FC between the

left and right insula had the largest difference between patients with MDD and HCs (FC#12 in

Fig 4B). (2) A total of 19 of 25 FCs exhibited “under-connectivity,” and only 6 FCs exhibited

“over-connectivity.” Note that the state of FC exhibiting the smaller (i.e., more negative) and

greater (more positive) mean correlation values in the MDD population than the HC popula-

tion is termed under- and over-connectivity, respectively. (3) Two FCs (FC#11 and FC#23 in

Fig 4B) were related to the subgenual anterior cingulate cortex (sgACC). (4) FC#2 was FC

between the sensory motor cortex (postcentral cortex) and the left dorsolateral prefrontal cor-

tex (left DLPFC). A detailed list of the FCs is provided in S5 Table. Furthermore, the mean FC

values for HCs and patients with MDD in the discovery dataset (Fig 5A) were similar to those

in the independent validation dataset (Fig 5B), pointing to the reproducibility of the FC values.

Generalization of the MDD classifier to other disorders

We sought to investigate and confirm the spectral structure among the disorders as revealed

by previous studies [16–18]. If the MDD classifier predicts patients with a different disorder

from patients from MDD, then the probability of diagnosis for patients with that disorder

should be over 0.5. In this case, we may say that the patients possess some degree of MDD-

ness and that this disorder is related to MDD according to the imaging biological dimension.

To assess this possibility, we applied our MDD classifier to patients with SCZ and ASD

included in the DecNef Project Brain Data Repository (S6 Table, https://bicr-resource.atr.jp/

srpbsopen/).

We found that patients with SCZ have high MDD-ness (accuracy = 76%, P = 2.0×10−12,

2-way binomial test) and that patients with ASD did not have high MDD-ness (accuracy = 55%,

P = 0.20, 2-way binomial test) (S6 Text and S5 Fig). This result suggests that the MDD classifier

generalizes to SCZ but not to ASD. We note that our discovery dataset for the construction of

the MDD classifier did not include any patients with MDD who were comorbid with SCZ and

only 1 patient with MDD who was comorbid with ASD. Therefore, our classifier was not

affected by either SCZ or ASD diagnosis. Thus, the above generalization of the MDD classifier

may point to a certain neurobiological relevance among diseases.

Discussion

In this study, we thoroughly considered conditions and resolved difficulties in order to ensure

the generalization of our brain network marker in the independent validation dataset, which

does not include any imaging sites of the discovery dataset. We succeeded in generalizing our

network marker to the big independent validation dataset. This generalization ensures scien-

tific reproducibility and the clinical applicability of rs-fMRI. Without this fundamental evi-

dence, we cannot proceed to the development of rs-fMRI-based subtyping, evaluation of drug

effects, or exploration of a multi-spectrum disorder in the biological dimensions, as mentioned

in the Introduction section. Therefore, our study found generalizable psychiatric biomarkers,

which the fields of psychiatry, neuroscience, and computational theory have long sought out,

to no avail, since the RDoC initiative.

We developed generalizable brain network markers without restriction to treatment-resis-

tant or melancholic MDD. Most previous studies have reported the performance of a predic-

tion model using data from the same imaging sites using a CV technique. However, because of
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large imaging site differences in rs-fMRI data [26,46], CV methods generally induce inflations

in performance. To ensure reproducibility, it is critical to demonstrate the generalizability of

the models with an independent validation dataset acquired from completely different imaging

sites [15,20–22]. To overcome the abovementioned site differences, we reduced site differences

in a multisite large-scale rs-fMRI dataset using our novel harmonization method. Next, we

constructed an MDD classifier that was acceptably generalized to the independent validation

dataset. Acceptable generalized prediction performance was also achieved for the 5 individual

imaging site datasets (Fig 3D). This generalization was achieved even though the imaging pro-

tocols in the independent validation datasets were different from the discovery dataset. There

Fig 4. Important FCs for MDD diagnosis. (a) The 25 FCs viewed from left, back, right, and top. Interhemispheric connections are shown in the back and top

views only. Regions are color-coded according to the intrinsic network. The state of functional connectivity exhibiting the smaller (i.e., more negative) and

greater (more positive) mean correlation index in the MDD population than in the HC population is termed under- (blue line) and over-connectivity (red

line), respectively. The width of the line represents the effect size of the difference (t-value) in the FC values between MDD and HC groups. (b) Listed here are

the laterality and anatomical identification of the ROI as identified by the AAL and associated intrinsic networks related to the 25 FCs. AAL, anatomical

automatic labeling; DMN, default mode network; FC, functional connectivity; FPN, fronto-parietal network; HC, healthy control; MDD, major depressive

disorder; ROI, region of interest. An interactive display of each connection in Fig 4A can be accessed from https://bicr.atr.jp/~imamizu/p5/MDD/.

https://doi.org/10.1371/journal.pbio.3000966.g004

Fig 5. Reproducibility of important FCs for MDD diagnosis. (a) The FC values for both HCs (blue bar) and patients with MDD (red bar) in the discovery dataset. (b)

The FC values for both HCs and patients with MDD in the independent validation dataset. The error bar represents the standard error. The numerical data used in this

figure are included in S1 Data. FC, functional connectivity; HCs, healthy controls; MDD, major depressive disorder.

https://doi.org/10.1371/journal.pbio.3000966.g005
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are only 2 studies in which generalization of FC-based MDD classifiers to independent valida-

tion data was demonstrated [12,16]. To the best of our knowledge, our work is the first to con-

struct a generalized classifier of MDD without restriction to certain MDD subtypes: Drysdale

concentrated on patients with MDD who were treatment resistant, and Ichikawa restricted

patients with the melancholic subtype of MDD. Constructing the whole MDD marker is

important for subsequent MDD subtyping analyses. This was achieved for the first time by col-

lecting data on a large variety of patients with MDD from multiple imaging sites and objec-

tively harmonizing them with a traveling subject dataset. Furthermore, our simulation result

indicates that our brain network marker of MDD could more objectively and stably diagnose

MDD than the diagnosis by clinicians based on the DSM, even in consideration of the variance

across fMRI scanners and imaging sites.

For the application of our harmonization method to the actual medical field, the best classi-

fication performance will be achieved when (1) all imaging sites are involved in a traveling sub-

ject dataset; (2) the traveling subject harmonization is applied throughout the discovery and

the validation datasets; and (3) a brain network marker is reconstructed from the harmonized

datasets. However, when we use our method under a medical device program approval, it

seems more realistic to conduct the harmonization without using the discovery dataset because

imaging sites cannot be added to the dataset after the approval. As such, the method in this

paper or the method of applying the traveling subject harmonization within the independent

validation dataset should be preferred. It is important to note that because of the absence of

the traveling subject dataset, traveling subject harmonization was not possible for the indepen-

dent validation dataset, and we were forced to use ComBat in this case.

The machine learning algorithms reliably identified the 25 FCs that are important for MDD

diagnosis (Fig 4 and S5 Table). We hereafter summarize the characteristics of these FCs. (1)

The FC between the left and right insula revealed the largest differences between patients with

MDD and HCs (FC#12 in Fig 4B). Abnormalities in the insula were not only found in patients

with MDD [47,48] but also reported as common abnormalities (reduced gray matter volume)

among psychiatric disorders [4]. Therefore, the connectivity associated with the insula is a

potential candidate for the neurobiological dimension to understand a multi-spectrum disor-

der. (2) A total of 19 of 25 FCs exhibited “under-connectivity,” and only 6 FCs exhibited

“over-connectivity.” Note that the state of FC exhibiting the smaller (i.e., more negative) and

greater (more positive) mean correlation values in the MDD population than the HC popula-

tion is termed under- and over-connectivity, respectively. (3) Two FCs (FC#11 and FC#23 in

Fig 4B) were related to the sgACC. According to a previous study, sgACC is metabolically

overactive in treatment-resistant depression and is known as an important treatment target of

deep brain stimulation for MDD [49]. (4) FC#2 was the FC between the sensory motor cortex

(postcentral cortex) and the left DLPFC. Previous study shows that the left DLPFC is anticorre-

lated with the sgACC and is known as an important treatment target of repetitive transcranial

magnetic stimulation (rTMS) for MDD [50]. These results indicate that we need further analy-

ses to clarify how the classifier’s output and abnormalities in each FC are associated with cog-

nitive and affective functions in a future study.

Ultimately, it would be very important to understand the relationships across disorders

(multi-disorder spectrum). We found that SCZ had a high tendency (similarity) toward MDD,

while ASD had no such a tendency toward MDD (S5 Fig). This result suggests that the MDD

classifier generalizes to SCZ but not to ASD. Thus, the above generalization of the MDD classi-

fier may point to a certain neurobiological relevance among diseases. Our patients with SCZ

were in the chronic phase and had negative symptoms. Considering that the negative symp-

toms of SCZ are similar to those of depression [51–56], the generalization hypothesizes the

existence of neurobiological dimensions underlying the common symptoms between SCZ and
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MDD. We need further analyses to quantitatively examine the neurobiological relationship

between SCZ and MDD by gathering more precise information on SCZ (symptoms and medi-

cation history). To further understand the multi-disorder spectrum, we developed markers of

SCZ and ASD using the same method as in this study in addition to a brain network marker of

MDD (S6 Text). As a result, we found an interesting asymmetric relationship among these dis-

orders: The classifier of SCZ did not generalize to patients with MDD (S5 Fig). This kind of

asymmetry in the classifiers had also been found between the SCZ classifier and the ASD clas-

sifier (the ASD classifier generalized to SCZ, but the SCZ classifier did not generalize to ASD)

[17,18]. These results provide us with important information for understanding the biological

relationships between diseases. For example, the above asymmetry between the SCZ and ASD

or MDD classifiers suggests that the brain network related to SCZ is characterized by a larger

diversity than that of ASD or MDD and that it partially shares information with the smaller

brain network related to ASD or MDD than that of SCZ [18].

Although biomarkers have been developed with the aim of diagnosing patients, the focus

has shifted to the identification of biomarkers that can determine therapeutic targets, such as

theranostic biomarkers [57,58], which would allow for more personalized treatment

approaches. The 25 FCs discovered in this study are promising candidates as theranostic bio-

markers for MDD because they are related to the MDD diagnosis. Future work should investi-

gate whether modulation of FC could be an effective treatment in MDD by using an

intervention method with regard to FC, such as functional connectivity neurofeedback train-

ing [57–61].

Materials and methods

Ethics statement

All participants in all datasets provided written informed consent. All recruitment procedures

and experimental protocols were approved by the institutional review boards of the principal

investigators’ respective institutions (Advanced Telecommunications Research Institute Inter-

national [approval numbers: 13–133, 14–133, 15–133, 16–133, 17–133, and 18–133], Hiro-

shima University [E-38], Kyoto Prefectural University of Medicine [RBMR-C-1098], Showa

University [SWA] [B-2014-019 and UMIN000016134], the University of Tokyo [UTO] Faculty

of Medicine [3150], Kyoto University [C809 and R0027], and Yamaguchi University [H23-153

and H25-85]) and conducted in accordance with the Declaration of Helsinki.

Participants

We used 2 rs-fMRI datasets for the analyses: (1) The “discovery dataset” contained data from

713 participants (564 HCs from 4 sites, 149 patients with MDD from 3 sites; Table 1). Each

participant underwent a single rs-fMRI session, which lasted for 10 min. Within the Japanese

SRPBS DecNef project, we planned to acquire the rs-fMRI data using a unified imaging proto-

col (S1 Table; http://bicr.atr.jp/rs-fmri-protocol-2/). However, there were 2 erroneous phase-

encoding directions (P!A and A!P). In addition, different sites had different MRI hardware

(S1 Table). During the rs-fMRI scans, participants were instructed to “Relax. Stay Awake. Fix-

ate on the central crosshair mark, and do not concentrate on specific things.” This dataset was

acquired in the SRPBS DecNef project from 2014. (2) The “independent validation dataset”

contained data from 449 participants (264 HCs and 185 patients with MDD from 4 indepen-

dent sites; Table 1). Data were acquired following protocols reported in S1 Table. The sites

used were different from the discovery dataset. Each participant underwent a single rs-fMRI

session lasting for 5 or 8 min. This data set was acquired in other projects from 2008 and not

the SRPBS DecNef. The dataset collected from Hiroshima University Hospital (HUH),
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Hiroshima Kajikawa Hospital (HKH), and Hiroshima Rehabilitation Center (HRC) in the

independent validation dataset were acquired by “development of diagnosis and treatment

techniques for patients with severe intractable depression and insensitivity to antidepressant

treatment based on molecular and cellular researches on BDNF and depression” of the Japan

Science and Technology Agency Core Research for Evolutional Science and Technology

(CREST) from 2008 and by “understanding the neurocircuit–molecular mechanism underly-

ing pathophysiology of depression and the development of its neuroscience-based diagnosis

and treatment” of the SRPBS from 2011. The dataset collected from Yamaguchi University

(UYA) was acquired by “exploration of the biological markers for discrimination of heteroge-

neous pathophysiology of major depressive disorder” of the SRPBS from 2012. We further

included the dataset collected from a country outside Japan (OpenNeuro: https://openneuro.

org/datasets/ds002748/versions/1.0.0) in the final independent validation dataset (21 HCs and

51 patients with MDD; Table 1). In both datasets, depression symptoms were evaluated using

the BDI-II score obtained from most participants in each dataset. This study was carried out in

accordance with the recommendations of the institutional review boards of the principal

investigators’ respective institutions (Hiroshima University, Kyoto University, Showa Univer-

sity, University of Tokyo, and Yamaguchi University) with written informed consent from all

subjects in accordance with the Declaration of Helsinki. The protocol was approved by the

institutional review boards of the principal investigators’ respective institutions (Hiroshima

University, Kyoto University, Showa University, University of Tokyo, and Yamaguchi Univer-

sity). Most data utilized in this study can be downloaded publicly from the DecNef Project

Brain Data Repository at https://bicr-resource.atr.jp/srpbsopen/, https://bicr.atr.jp/dcn/en/

download/harmonization/, and https://openneuro.org/datasets/ds002748/versions/1.0.0. The

data availability statements of each site are described in S1 Table.

Preprocessing and calculation of the resting-state FC matrix

We preprocessed the rs-fMRI data using FMRIPREP version 1.0.8 [62]. The first 10 s of the

data were discarded to allow for T1 equilibration. Preprocessing steps included slice-timing

correction, realignment, coregistration, distortion correction using a field map, segmentation

of T1-weighted structural images, normalization to Montreal Neurological Institute (MNI)

space, and spatial smoothing with an isotropic Gaussian kernel of 6 mm full width at half max-

imum. “Fieldmap-less” distortion correction was performed for the independent validation

dataset due to the lack of field map data. For more details on the pipeline, see http://fmriprep.

readthedocs.io/en/latest/workflows.html. For 6 participants’ data in the independent valida-

tion dataset, the coregistration was unsuccessful, and we therefore excluded these data from

further analysis.

Parcellation of brain regions

To analyze the data using Human Connectome Project (HCP) style surface-based methods,

we used ciftify toolbox version 2.0.2 [63]. This allowed us to analyze our data, which lacked the

T2-weighted image required for HCP pipelines, using an HCP-like surface-based pipeline.

Next, we used Glasser’s 379 surface-based parcellations (cortical 360 parcellations + subcortical

19 parcellations) as ROIs, considered reliable brain parcellations [34]. The BOLD signal time

courses were extracted from these 379 ROIs. To facilitate the comparison of our results with

previous studies, we identified the anatomical names of important ROIs and the names of

intrinsic brain networks that included the ROIs using anatomical automatic labeling (AAL)

[64] and Neurosynth (http://neurosynth.org/locations/).
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Physiological noise regression

Physiological noise regressors were extracted by applying CompCor [65]. Principal compo-

nents were estimated for the anatomical CompCor (aCompCor). A mask to exclude signals

with a cortical origin was obtained by eroding the brain mask and ensuring that it contained

subcortical structures only. Five aCompCor components were calculated within the intersec-

tion of the subcortical mask and the union of the cerebrospinal fluid (CSF) and white matter

(WM) masks calculated in the T1-weighted image space after their projection to the native

space of functional images in each session. To remove several sources of spurious variance, we

used a linear regression with 12 regression parameters, such as 6 motion parameters, average

signals over the whole brain, and 5 aCompCor components.

Temporal filtering

A temporal bandpass filter was applied to the time series using a first-order Butterworth filter

with a pass band between 0.01 Hz and 0.08 Hz to restrict the analysis to low-frequency fluctua-

tions, which are characteristic of rs-fMRI BOLD activity [66].

Head motion

FD [67] was calculated for each functional session using Nipype (https://nipype.readthedocs.

io/en/latest/). FD was used in the subsequent scrubbing procedure. To reduce spurious

changes in FC from head motion, we removed volumes with FD >0.5 mm, as proposed in a

previous study [67]. The FD represents head motion between 2 consecutive volumes as a scalar

quantity (i.e., the summation of absolute displacements in translation and rotation). Using the

aforementioned threshold, 6.3% ± 13.5 volumes (mean ± SD) were removed per rs-fMRI ses-

sion in all datasets. If the ratio of the excluded volumes after scrubbing exceeded the mean + 3

SD, participants were excluded from the analysis. As a result, 32 participants were removed

from all datasets. Thus, we included 683 participants (545 HCs, 138 patients with MDD) in the

discovery dataset and 440 participants (259 HCs, 181 patients with MDD) in the independent

validation dataset for further analysis.

Calculation of FC matrix

FC was calculated as the temporal correlation of rs-fMRI BOLD signals across 379 ROIs for

each participant. There are a number of different candidates to measure FC, such as the tan-

gent method and partial correlation; however, we used a Pearson’s correlation coefficient

because they are the most commonly used values in previous studies. Fisher’s z-transformed

Pearson’s correlation coefficients were calculated between the preprocessed BOLD signal time

courses of each possible pair of ROIs and used to construct 379 × 379 symmetrical connectivity

matrices in which each element represents a connection strength between 2 ROIs. We used

71,631 FC values [(379 × 378)/2] of the lower triangular matrix of the connectivity matrix for

further analysis.

Control of site differences

Next, we used a traveling subject harmonization method to control for site differences in FC in

the discovery dataset. This method enabled us to subtract pure site differences (measurement

bias), which are estimated from the traveling subject dataset wherein multiple participants

travel to multiple sites to assess measurement bias. The participant factor (p), measurement

bias (m), sampling biases (shc, smdd), and psychiatric disorder factor (d) were estimated by fit-

ting the regression model to the FC values of all participants from the discovery dataset and
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the traveling subject dataset. For each connectivity, the regression model can be written as fol-

lows:

Connectivity ¼ xm
Tmþ xshc

Tshc þ xsmdd

Tsmdd þ xd
Td þ xp

Tpþ const þ e;

such that
X9

j
pj ¼ 0;

X4

k
mk ¼ 0;

X4

k
shck ¼ 0;

X3

k
smddk ¼ 0; d1ðHCÞ ¼ 0;

in which m represents the measurement bias (4 sites × 1), shc represents the sampling bias of

HCs (4 sites × 1), smdd represents the sampling bias of patients with MDD (3 sites × 1), d repre-

sents the disorder factor (2 × 1), p represents the participant factor (9 traveling subjects × 1),

const represents the average FC value across all participants from all sites, and e � N ð0; g� 1Þ

represents noise. Measurement biases were removed by subtracting the estimated measure-

ment biases. Thus, the harmonized FC values were set as follows:

ConnectivityHarmonized ¼ Connectivity � xm
Tm̂;

in which m̂ represents the estimated measurement bias. More detailed information have been

previously described [26].

We used the ComBat harmonization method [35–38] to control for site differences in FC

in the independent validation dataset because we did not have a traveling subject dataset for

those sites. We performed harmonization to correct only for the site difference using informa-

tion on MDD diagnosis, BDI score, age, sex, and dominant hand as auxiliary variables in Com-

Bat. Notably, compared with the conventional regression method, the ComBat method is a

more advanced method to control for site effects [35–38].

Constructing the MDD classifier using the discovery dataset

We constructed a brain network marker for MDD that distinguished between HCs and

patients with MDD using the discovery dataset based on 71,631 FC values. To construct the

network marker, we applied a machine learning technique. Although SVM is often used as a

classifier, SVM is not suitable for investigating the contribution of explanatory variables

because it is difficult to calculate the contribution of each explanatory variable. Based on our

previous study [17], we assumed that psychiatric disorder factors were not associated with

whole brain connectivity, but rather with a specific subset of connections. Therefore, we con-

ducted logistic regression analyses using the LASSO method to select the optimal subset of FCs

[40]. A logistic function was used to define the probability of a participant belonging to the

MDD class as follows:

Psub ysub ¼ 1jcsub;wð Þ ¼
1

1þ expð� wTcsubÞ
;

in which ysub ysub represents the class label (MDD, y = 1; HC, y = 0) of a participant, csubcsub
represents an FC vector for a given participant, and w represents the weight vector. The weight

vector w was determined to minimize

J wð Þ ¼ �
1

nsub

Xnsub

j¼1

logPjðyj ¼ 1jcj;wÞ þ lkwk1;

in which kwk1 ¼
PN

i jwij and λ represent hyperparameters that control the amount of shrink-

age applied to the estimates. To estimate weights of the logistic regression and a hyperpara-

meter λ, we conducted a nested cross-validation procedure (Fig 2). In this procedure, we first
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divided the whole discovery dataset into a training set (9 folds of 10 folds), which used for

training a model and a test set (a fold of 10 folds) for testing the model. To minimize bias due

to the differences in the numbers of patients with MDD and HCs, we used an undersampling

method [41]. Almost 125 patients with MDD and 125 HCs were randomly sampled from the

training set, and the classifier performance was tested using the test set. When we performed

the undersampling and subsampling procedures, we matched the mean age between MDD

and HC groups in each subsample. Since only a subset of training data is used after undersam-

pling, we repeated the random sampling procedure 10 times (i.e., subsampling). We then fitted

a model to each subsample while tuning a regularization parameter in the inner loop of the

nested cross-validation, resulting in 10 classifiers. For the inner loop, we used the “lassoglm”

function in MATLAB (R2016b, Mathworks, USA) and set “NumLambda” to 25 and “CV” to

10. In this inner loop, we first calculated a value of λ just large enough such that the only opti-

mal solution is the all-zeroes vector. A total of 25 values of λ were prepared at equal intervals

from 0 to λmax, and the λ was determined according to the one standard error rule in which we

selected the largest λ within the standard deviation of the minimum prediction error (among

all λ) [27]. The mean classifier output value (diagnostic probability) was considered indicative

of the classifier output. Diagnostic probability values of>0.5 were considered indicative of

patients with MDD. We calculated the AUC using the “perfcurve” function in MATLAB. In

addition, we calculated the accuracy, sensitivity, specificity, PPV, and NPV. Furthermore, we

evaluated classifier performance for the unbalanced dataset using the MCC [42,43], which

takes into account the ratio of the confusion matrix size.

Generalization performance of the classifier

We tested the generalizability of the network marker using an independent validation dataset.

We created 100 classifiers of MDD (10-fold CV × 10 subsamples); therefore, we applied all

trained classifiers to the independent validation dataset. Next, we averaged the 100 outputs

(diagnostic probability) for each participant and considered the participant to be a patient

with MDD if the averaged diagnostic probability value was>0.5.

To test the statistical significance of the MDD classifier performance, we performed a per-

mutation test. We permuted the diagnostic labels of the discovery dataset and conducted a

10-fold CV and 10-subsampling procedure. Next, we took an average of the 100 outputs (diag-

nostic probability); a mean diagnostic probability value of>0.5 was considered indicative of a

diagnosis of MDD. We repeated this permutation procedure 100 times and calculated the

AUC and MCC as the performance metrics of each permutation.

Identification of the important FCs linked to diagnosis

We examined important resting-state FC for an MDD diagnosis. Briefly, we counted the num-

ber of times an FC was selected by LASSO during the 10-fold CV. We considered that this FC

was important if this number was significantly higher than chance, according to a permutation

test. We permuted the diagnostic labels of the discovery dataset and conducted a 10-fold CV

and 10-subsampling procedure and repeated this permutation procedure 100 times. We then

used the number of counts for each connection selected by the sparse algorithm during

10-fold CVs × 10 subsamplings (max 100 times) as a statistic in every permutation dataset. To

control for the multiple comparison problem, we set a null distribution as the max distribution

of the number of counts over all functional connections and set our statistical significance to a

certain threshold (P< 0.05, 1-sided). FCs selected�17 times out of a total of 100 times were

regarded as diagnostically important.
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Supporting information

S1 Data. Excel spreadsheet containing, in separate sheets, the underlying numerical data

for Figs 1, 3A–3D, 5A and 5B, and all Supporting information figures.

(XLSX)

S1 Text. Prediction performance using SVM.

(DOCX)

S2 Text. Analysis and validation of controls for confound artifact.

(DOCX)

S3 Text. Utility of harmonization.

(DOCX)

S4 Text. Differences in prediction performance among imaging sites.

(DOCX)

S5 Text. Higher/lower resolution of regions of interest.

(DOCX)

S6 Text. Generalization of the classifiers to other disorders.

(DOCX)

S1 Fig. Distribution of prediction performance and difference in mean age between MDD

and HC across all subsamples. The distribution of the AUC and t-value (difference in mean

age between MDD and HC groups) across all subsamples. The numerical data used in this fig-

ure are included in S1 Data. AUC, area under the curve; HC, healthy control; MDD, major

depressive disorder.

(TIF)

S2 Fig. Comparing the prediction performances among harmonization schemes. (a) The

prediction performance (AUC) of the MDD classifier in the independent validation dataset for

each harmonization scheme for the discovery dataset and the independent validation dataset

(without harmonization; blue bar, ComBat harmonization; yellow bar). (b) Probability distri-

butions for the diagnosis of MDD in the data from OpenNeuro (OTHER) without harmoniza-

tion or with ComBat harmonization. The numerical data used in this figure are included in S1

Data. AUC, area under the curve; HC, healthy control; MCC, Matthews correlation coefficient;

MDD, major depressive disorder.

(TIF)

S3 Fig. Bootstrap prediction performances in the independent validation dataset. Predic-

tion performances of the MDD classifier in the independent validation dataset in each site.

Each color bar indicates a site. Error bar shows the 95% confidence interval from the boot-

strap. The numerical data used in this figure are included in S1 Data. AUC, area under the

curve; HKH, Hiroshima Kajikawa Hospital; HRC, Hiroshima Rehabilitation Center; HUH,

Hiroshima University Hospital; MDD, major depressive disorder; UYA, Yamaguchi Univer-

sity.

(TIF)

S4 Fig. Higher/lower resolution of regions of interest. The prediction performances (AUC,

accuracy, specificity, and sensitivity) of the MDD classifier constructed by Schaefer’s ROIs as a

function of the number of ROIs. The numerical data used in this figure are included in S1

Data. AUC, area under the curve; MDD, major depressive disorder; ROI, region of interest.

(TIF)
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S5 Fig. Generalization of the classifiers to other psychiatric disorders. Density distributions

of the probability of diagnosis obtained by applying (a) the MDD marker, (b) SCZ marker,

and (c) ASD marker to the HCs and patients with MDD, SCZ, and ASD. In each panel, the

patient distribution and the HC distribution are plotted separately, with the colored areas rep-

resenting one or the other. The numbers in parentheses next to HC, MDD, ASD, and SCZ in

each panel indicate the number of subjects in the distributions. The independent validation

dataset was used in a and b. HCs in a, b, and c were scanned at the same sites as their corre-

sponding patient data. The numerical data used in this figure are included in S1 Data. ASD,

autism spectrum disorder; HC, healthy control; MDD, major depressive disorder; SCZ, schizo-

phrenia.

(TIF)

S1 Table. Imaging protocols for resting-state fMRI in both datasets.

(XLSX)

S2 Table. Clinical characteristics of major depressive disorder patients in the discovery

dataset.

(XLSX)

S3 Table. Imaging protocols for resting-state fMRI in the traveling subject dataset.

(XLSX)

S4 Table. Prediction performances in the independent validation dataset for different

harmonization schemes.

(XLSX)

S5 Table. Description of important FCs.

(XLSX)

S6 Table. Demographic characteristics of participants in both datasets.

(XLSX)
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