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Abstract

While there is no doubt that social signals affect human reinforcement learning, there is still

no consensus about how this process is computationally implemented. To address this

issue, we compared three psychologically plausible hypotheses about the algorithmic imple-

mentation of imitation in reinforcement learning. The first hypothesis, decision biasing (DB),

postulates that imitation consists in transiently biasing the learner’s action selection without

affecting their value function. According to the second hypothesis, model-based imitation

(MB), the learner infers the demonstrator’s value function through inverse reinforcement

learning and uses it to bias action selection. Finally, according to the third hypothesis, value

shaping (VS), the demonstrator’s actions directly affect the learner’s value function. We

tested these three hypotheses in 2 experiments (N = 24 and N = 44) featuring a new variant

of a social reinforcement learning task. We show through model comparison and model sim-

ulation that VS provides the best explanation of learner’s behavior. Results replicated in a

third independent experiment featuring a larger cohort and a different design (N = 302). In

our experiments, we also manipulated the quality of the demonstrators’ choices and found

that learners were able to adapt their imitation rate, so that only skilled demonstrators were

imitated. We proposed and tested an efficient meta-learning process to account for this

effect, where imitation is regulated by the agreement between the learner and the demon-

strator. In sum, our findings provide new insights and perspectives on the computational

mechanisms underlying adaptive imitation in human reinforcement learning.

Introduction

The complexity of our society could not have been achieved if humans had to rely only on

individual learning to identify solutions for everyday decision problems. An isolated learner

must invest sufficient energy and time to explore the available options and may thus encounter

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001028 December 8, 2020 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Najar A, Bonnet E, Bahrami B, Palminteri

S (2020) The actions of others act as a pseudo-

reward to drive imitation in the context of social

reinforcement learning. PLoS Biol 18(12):

e3001028. https://doi.org/10.1371/journal.

pbio.3001028

Academic Editor: Matthew F. S. Rushworth,

Oxford University, UNITED KINGDOM

Received: October 24, 2019

Accepted: November 10, 2020

Published: December 8, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pbio.3001028

Copyright: © 2020 Najar et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: https://github.com/

hrl-team/mfree_imitation.

Funding: SP was supported by an ATIP-Avenir

grant (R16069JS), the Programme Emergence(s)

https://orcid.org/0000-0002-6966-8469
https://orcid.org/0000-0002-9751-9778
https://orcid.org/0000-0001-5768-6646
https://doi.org/10.1371/journal.pbio.3001028
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001028&domain=pdf&date_stamp=2020-12-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001028&domain=pdf&date_stamp=2020-12-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001028&domain=pdf&date_stamp=2020-12-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001028&domain=pdf&date_stamp=2020-12-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001028&domain=pdf&date_stamp=2020-12-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001028&domain=pdf&date_stamp=2020-12-08
https://doi.org/10.1371/journal.pbio.3001028
https://doi.org/10.1371/journal.pbio.3001028
https://doi.org/10.1371/journal.pbio.3001028
http://creativecommons.org/licenses/by/4.0/
https://github.com/hrl-team/mfree_imitation
https://github.com/hrl-team/mfree_imitation


unexpected negative outcomes, making individual learning slow, costly, and risky. Social

learning may largely mitigate the costs and risks of individual learning by capitalizing on the

knowledge and experience of other participants.

Imitation is one of the main mechanisms of social learning and has been widely investigated

in psychology and neuroscience [1,2]. It has been studied from various frameworks, such as

the mirror neurons system [3], theory of mind [4], and Bayesian inference [5]. While these

studies provide valuable insights about the computational mechanisms of imitation, they are

still limited in their scope as imitation is treated in isolation from other learning processes,

such as autonomous reinforcement learning. Here, we compare three radically different and

psychologically plausible computational implementations of how imitation can be integrated

into a standard reinforcement learning algorithm [6–9]. To illustrate the three hypotheses, we

consider the stylized situation, where a reinforcement Learner is exposed to the choices of a

Demonstrator, before making her own choices.

The first hypothesis, decision biasing (DB), well represented in the cognitive neuroscience

literature, postulates that observing a Demonstrator’s choice influences the learning process by

biasing the Learner’s decision on the next trial toward the most recently observed demonstra-

tion [6,7]. This implementation presents one limitation in that it does not allow an extended

effect of imitation over time. This hypothesis conceptualizes imitation as biasing the explora-

tion strategy of the Learner and contrasts with several observations in experimental psychology

suggesting that social signals have long-lasting effects on the Learner’s behavior [10]. In addi-

tion, the experimental designs of these previous studies were not well suited for assessing

whether imitation accumulates over successive demonstrations and propagates over several

trials, since one observational trial was strictly followed by one private trial.

A second account consists in framing imitation as an inverse reinforcement learning prob-

lem, where the Learner infers the preferences of the Demonstrator [5,9]. In previous para-

digms, the model of the Demonstrator is generally used to predict her behavior, but these

representations could easily be recycled to influence the behavior of the Learner. Unlike the

DB account, this model-based imitation (MB) allows for the accumulation of demonstrations

and the propagation of imitation over several trials. However, this method is computationally

more demanding and still leaves unanswered the question of how the model of the Demon-

strator is integrated into the behavior of the Learner.

In line with previous works on advice taking [11] and learning from evaluative feedback

[12], we propose a third approach where the demonstrations influence the value function

instead of option selection [13]. As such, this value shaping (VS) scheme has the desirable prop-

erty of allowing for a long-lasting influence of social signals while being computationally simple.

We compared these three computational implementations of imitation (and a baseline model

without social learning) against empirical data from two independent experiments (Exp 1: N = 24,

Exp 2: N = 44). Both experiments featured a new variant of a social reinforcement learning task,

where, to assess the accumulation and the propagation of social signals, we manipulated the num-

ber of demonstrations and private choices in a trial-by-trial basis (Fig 1). We also tested the robust-

ness and generalization of the results in a third, independent, experiment featuring a larger sample

size (N = 302) and different design specifications [14]. We also manipulated the skills of the Dem-

onstrator to assess whether the imitation parameters were modulated in an adaptive manner. This

manipulation was implemented within-subject in Exp 1 and between-subject in Exp 2.

Overall, quantitative model comparison indicated that imitation, whenever adaptive (i.e.,

when the Demonstrator outperforms the Learner), takes the computational form of VS, rather

than DB or MB.

We also analyzed the parameters of the winning model to determine whether or not, in the

context of social reinforcement learning, more weight is given to information derived from
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oneself compared to the other [15]. The comparison of the private reward learning rate with the

imitation learning rate was overall consistent with more weight given to privately generated infor-

mation. Finally, we compared the imitation learning rates across different observational condi-

tions (Skilled Demonstrator (SD) versus Unskilled Demonstrator (UD)) to see whether imitation

is modulated. Consistent with previous theoretical and empirical work about meta-learning

[8,16], we found that participants can infer the skill of a Demonstrator and regulate imitation

accordingly. This result was even more pronounced when the skill of the Demonstrator was

implemented within-subject, which suggests that being exposed to both SD and UD models could

be more effective in preventing Learners from bad influence. We formalized this intuition in a

meta-learning model where imitation is flexibly modulated by the inferred Demonstrator’s skills.

Results

Experimental design

We performed 2 experiments implementing a probabilistic instrumental learning task (Fig 1),

where the participants were repeatedly presented with a binary choice between 2 abstract

Fig 1. Experimental design. (a) Experimental conditions. Conditions were randomized within sessions. In the Private condition (P), there was no social

information, and the task was a basic reinforcement learning task. In observational conditions (D), the Learner observed choices of another player that were

interleaved with her own choices. The training involved a short Private session followed by an Observational session. In the SD condition, the other player picked

the reward maximizing symbol 80% of the time, while in the UD condition, the other player picked the reward maximizing symbol only 20% of the time. The

correct choice rate of the other player (SD–UD contrast) was manipulated within-subject in Exp 1 and between-subjects in Exp 2. Experiments 1 and 2 comprised

4 and 3 sessions, respectively. (b) Typical observational and private trials (timing of the screen given in milliseconds). During observational trials, the Learner was

asked to match the choice of the other player before moving to the next trial. The Demonstrator’s outcome was not shown and replaced by a question mark “?”. P,

private; SD, Skilled Demonstrator; UD, Unskilled Demonstrator.

https://doi.org/10.1371/journal.pbio.3001028.g001
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visual stimuli resulting in either winning or losing a point. Symbols presented together in a

choice context had opposite and reciprocal winning and losing probabilities (0.7/0.3 in Exp 1

and 0.6/0.4 in Exp 2). The goal of the participant, i.e., the Learner, was to learn by trial-and-

error which of the 2 stimuli had the highest expected value. Three learning conditions were

presented in blocs of 20 trials each per session. In the Private condition (P), no information

other than reward outcome was provided to the Learner. Observational conditions involved

additional social information that was randomly interleaved within private choices. Specifi-

cally, during observational trials, the Learner could observe the choice of another player, here-

after referred to as the Demonstrator, on the same pair of stimuli. The outcome of the

Demonstrator was never shown as we were interested in pure imitation and not vicarious rein-

forcement learning. Participants were recruited in pairs and were told that they were observing

the choices of the other participant. However, the demonstrations were controlled by the com-

puter and drawn from 2 Bernoulli distributions. In the SD condition, the other player picked

the reward maximizing stimulus 80% of time. In the UD condition, the other player picked the

reward maximizing stimulus only 20% of time. The SD/UD manipulation was within-subject

in Exp 1 (all participants were exposed to both SD and UD) and between-subject in Exp 2

(each participant was exposed to either the SD or the UD).

Behavioral analyses

As a quality check, we first assessed whether or not participants were able to identify the correct

(i.e., reward maximizing) options. We found the correct choice rate to be significantly above

chance level in both experiments (Exp 1: M = 0.75, SD = 0.08, t(23) = 14.85, p = 2.8e-13; Exp 2:

M = 0.62, SD = 0.09, t(43) = 8.56, p = 7.69e-11), indicating that, in average, participants identi-

fied the reward maximizing options. We then assessed whether or not the correct choice rate

was affected by the skill of the Demonstrator (S1 Fig). In Exp 1, even if as expected the average

correct choice rate was higher in the SD compared to the UD condition (76% versus 73%), the

difference did not reach statistical significance (F(2,69) = 0.426, p = 0.655). In Exp 2, we found a

significant interaction between Demonstrator’s performance and social information (F(1,84) =

4.544, p = 0.036). The effect was driven by Learners in the SD group having a correct choice rate

differential greater than 0 (+5%) comparing the Observational and Private conditions and

Learners in the UD having a differential smaller than 0 (−4%) (direct comparison of the learn-

ing differential between UD versus SD: Welch 2-sample t test t(35.215) = 2.8589, p = 0.007).

These results indicate that Demonstrators’ skill affected Learners’ performance.

Model comparison

We fitted 4 computational models to the behavioral data of both experiments (Fig 2A). In our

model space, the baseline was represented by a Rescorla–Wagner (RW) model that does not inte-

grate social information into the learning process (i.e., it treats Private and Observational condi-

tions equivalently). The second model, DB, assumes that demonstrations only bias action selection

on the next trial [6]. The third model, MB, implements an inverse reinforcement learning process

that infers a model of the Demonstrator’s preferences and uses it for biasing action selection.

Finally, in the VS model, Demonstrator’s choices directly affect the value function of the

Learner using the following equation:

QðdÞ  QðdÞ þ ai � ½1 � QðdÞ�; ð1Þ

where d is the action chosen by the Demonstrator, Q is the value function of the Learner, and

αi is an imitation learning rate. In other terms, the VS model assumes that the Demonstrator’s

choice is perceived as a positive outcome (or surrogate reward).
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The exact computational implementation of each model was first optimized independently,

by comparing several alternative implementations of the same model: 2 implementations of

RW, 6 for DB, 9 for MB, and 2 for VS (Methods). In the main text, we only report the compari-

son between the best implementations of each model. The intermediate model comparison

results are provided with the Supporting information (cf. S2 Fig).

We first performed a model recovery analysis to check if the models are identifiable within

our task and parameter space (Fig 2B). We then compared the different models in the empiri-

cal data (Fig 3A). In Exp 1, roughly the same proportion of participants were explained by RW

(Model Frequency MF: 0.45, Exceedance Probability XP: 0.72) and VS (MF: 0.33, XP: 0.24).

These results can easily be explained by the fact that each participant encountered both SD

and UD. Since UD should not be imitated, their presence can justify the observed high fre-

quency of RW. We verified this intuition by fitting separately UD and SD conditions (plus the

Private condition). Indeed, we observed that participants’ behavior in the UD condition was

best explained by RW (MF: 1, XP: 1), whereas the choice data in the SD condition were better

explained by VS (MF: 0.9, XP: 1).

The same pattern was found in Exp 2 where the skill of the Demonstrator was manipulated

between-subjects. The subgroup of participants in the UD condition were best explained by

the RW model (MF: 0.63, XP: 0.89), while the subgroup of participants in the SD condition

were best explained by the VS model (MF: 1, XP: 1).

We also note that in our model space, parameters penalization only concerns the compari-

son between the RW versus the all imitation models. As the 3 imitation models have the same

number of free parameters, the DB, MB, and VS models can be compared just using the

Fig 2. Model comparison. (a) Model space: RW: The baseline is a Rescorla-Wagner model that only learns from self-

experienced rewards. Rewards r are used for computing a value function Q, which, in turn, is used for deriving a policy

π using a softmax function. Participant choices c are sampled according to π. The demonstrations d have no effect on

the learning process. DB: Demonstrations are used for biasing the participant’s policy without affecting the value

function. MB: Demonstrations are used for inferring the Demonstrator’s value function Qd, which is then used for

biasing the participant’s decisions. VS: Demonstrations directly affect the participant’s value function. αp private

reward learning rate. αi imitation decision bias parameter (DB, MB models) or imitation learning rate (VS model). αd
demonstration learning rate. β softmax inverse temperature. κ choice autocorrelation. (b) Model recovery: model

frequencies (blue shade) and exceedance probabilities (XP = 1) for each pair of simulated/fitted models, based on the

AIC. (c) Parameter recovery: Spearman correlation scores between each pair of simulated/fitted parameter values for

the winning model VS. AIC, Akaike Information Criterion; DB, decision biasing; MB, model-based imitation; RW,

Rescorla–Wagner; VS, value shaping.

https://doi.org/10.1371/journal.pbio.3001028.g002
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maximum likelihood without incurring overfitting. Overall, model comparison results (based

on the maximum likelihood comparison restricted to the DB, MB, and VS models) confirm

our conclusions that the VS outperforms DB and MB (cf. S10 Fig).

Of note, the model comparison results were robust across different implementations of the

model space, notably with or without asymmetric value update in private learning, with or

without including a choice autocorrelation parameter, and with or without allowing for nega-

tive imitation learning rates (Methods; S3 Fig). To sum up, in both experiments, we consis-

tently found that, when useful, imitation is computationally implemented in a VS way. These

results show that in our task, imitation has a direct effect on the value function of the Learner,

by reinforcing the observed actions, but without building an explicit model of the

Demonstrator.

Model properties

We analyzed model simulations to identify specific behavioral signatures of the different imita-

tion models. This analysis capitalizes on the specific feature of our experimental design,

namely the fact that we allowed for several observational or private trials to be presented in a

row (while keeping their overall number the same). This feature allowed us to assess the accu-

mulation and the propagation of social information over several consecutive trials. We

restricted the analysis to the SD condition, as we already showed that imitation is suppressed

in the UD conditions. We defined the behavioral imitation rates as the average number of tri-

als where the choice ci was equal to the demonstration dj. Behavioral imitation rates were

higher than chance in all cases (cf. S6 Fig). We defined accumulation as the difference in

behavioral imitation rates between 2 successive demonstrations dt−1 and dt−2 preceding a pri-

vate choice ct. A Learner paying attention only to the last demonstration should display a posi-

tive differential. Similarly, propagation was measured as the difference in behavioral imitation

rates between 2 successive private trials ct+1 and ct+2 following a demonstration dt. A Learner

that uses demonstrations only to bias exploration should display a positive differential.

Fig 3. Results. (a) Model comparison: model frequencies and exceedance probabilities (XP) of the fitted models based

on the AIC. Red lines: 0.25 chance level for model frequency and 0.95 threshold for exceedance probability. (b, c)

Learning rates of the winning model VS. (b) Comparison between private (αp) and imitation (αi) learning rates. (c)

Comparison between imitation learning rates when observing the UD ðαu
i Þ and the SD ðαs

iÞ.
�

p<0.05, ���p<0.001,

Wilcoxon test. Underlying data can be found in https://github.com/hrl-team/mfree_imitation/. AIC, Akaike

Information Criterion; DB, decision biasing; MB, model-based imitation; RW, Rescorla–Wagner; SD, Skilled

Demonstrator; UD, Unskilled Demonstrator; VS, value shaping.

https://doi.org/10.1371/journal.pbio.3001028.g003
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We analyzed these metrics in both empirical and simulated data (Fig 4). Models were simu-

lated using the set of the best fitting parameters. In addition to the VS and MB models, we

included 2 variants of the DB model (see Methods). The first variant, DB1, corresponds to the

standard implementation of DB that has been widely considered in the literature, which imple-

ments a “pure” DB process [6,17]. The second variant, DB6, is our improved version of DB1,

which includes the accumulation of demonstrations over consecutive observational trials in a

temporary memory trace and was the winning implementation within the DB family of mod-

els (cf. S2 Fig).

As expected, we found that the standard model (DB1) failed to capture the effect of accu-

mulation of demonstrations, since the demonstration at dt−2 was associated with a smaller

behavioral imitation rate compared to the demonstration at dt−1. This limitation was corrected

by allowing a short-term accumulation of the demonstration in DB6, whose simulations were

closer to the real data, to the same extent as VS and MB. However, both DB1 and DB6 were

incapable of reproducing the propagation of the demonstration over trials: The private choice

at ct+2 was associated with a smaller behavioral imitation rate compared to the private choice

at ct+1. Both VS and MB made good predictions about the propagation effect, but VS was

numerically closer to the real data compared to MB.

In summary, we did find different behavioral signatures of the different models in relation

to a specific feature of our design: allowing for more than 1 consecutive private or observa-

tional trials. All models (except the standard DB: DB1) were capable of reproducing the effect

of accumulation. However, neither version of DB was capable of reproducing the effect of

propagation. Thus, model simulations “falsify” the DB model and consolidate the model com-

parison results to support VS as the “winning” model.

Finally, in addition to analyzing these distinctive features of our model given our design, we

also checked whether the winning model was capable of capturing the observed behavior in an

Fig 4. Model properties. Difference in the behavioral imitation rate calculated between the 2 preceding

demonstrations (dt−1 minus dt−2; top row) and calculated between 2 consecutive choices (ct+1 minus ct+2; bottom row)

for Exp 1 (left column) and Exp 2 (right column). The first metric measures the accumulation of social signals across

consecutive observational trials, and the second metric measures the propagation of social signals across consecutive

private trials. Underlying data can be found in https://github.com/hrl-team/mfree_imitation/. DB, decision biasing;

MB, model-based imitation; VS, value shaping.

https://doi.org/10.1371/journal.pbio.3001028.g004
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unbiased manner, by computing the correlation between observed and simulated data points.

We found that the VS model captured well both between-trial and between-subject variance,

as all the correlations displayed slopes very close to 1 and intercepts very close to 0 (cf. S7 and

S8 Figs).

Parameter analysis

After verifying that the parameters of the winning model, VS, can be properly identified (Fig

2C), we analyzed the fitted parameters across experiments and conditions (Fig 3B and 3C).

We first assessed whether participants put more weight on their freely obtained outcomes

or on the choices of the Demonstrator. We found the private reward learning rates were signif-

icantly larger compared to the imitation learning rates (Fig 3B). This was true in Exp 1 (Wil-

coxon signed-rank test: V = 300, p = 1.192e−07). In Exp 2, the difference between private and

imitation learning rates was more pronounced when confronted with a UD (Wilcoxon signed-

rank test: V = 251, p = 1.431e−06) and still detectable when facing an SD (Wilcoxon signed-

rank test: V = 200, p = 0.01558).

We then compared imitation learning rates across different observational conditions to see

whether imitation was modulated by the skill of the Demonstrator (Fig 3C). We found the imita-

tion learning rate significantly higher in the SD condition compared to the UD condition (Exp

1: Wilcoxon signed-rank test: V = 9, p = 3.934e−06; Exp 2: Wilcoxon rank-sum test: W = 137,

p = 0.01312). We also inspected the other (nonsocial) parameters such as choice inverse temper-

ature and private reward learning rate to see whether the effect of the Demonstrator skill was

specific to imitation. This analysis revealed no significant difference between the nonsocial

parameters fitted in the UD and the SD conditions (Exp 1: all p>0.09; Exp 2: all p>0.2; cf. S4

Fig). This suggests that the strategic adjustment induced by the Demonstrator’s skill is specific to

the imitation process. The result of this analysis is consistent with the model comparison results

indicating that different computational models (RW and VS) explain the Learner’s behavior in

the different observational conditions (UD and SD, respectively), as a result of a meta-learning

process where the skill of the Demonstrator is inferred to modulate imitation.

Generalizing the results

To test the robustness of our results in another experimental setting and a larger cohort, we

analyzed an additional dataset (N = 302) from a recently published study [14]. This experi-

ment, hereafter noted as Exp 3, differs from ours in several aspects (see Methods). First of all,

the outcome contingencies were not static, but followed a random walk (Fig 5A), and Demon-

strator choices were actual choices recorded from 2 previous participants playing the exact

same reward contingencies. One of the participants used as Demonstrator displayed relatively

poor skill (0.60 ± 0.05), while the other relatively good skill (0.84 ± 0.03). The same Demon-

strator choices were not necessarily displayed across participants. As a result, the observed

Demonstrator’s correct choice rate ranged from 0.53 to 0.92. First, we checked that using Exp

3 set up we got a good model recovery with respect to our main model space, allowing us to

meaningfully compare the RW, MB, DB, and VS models (Fig 5B). Second, we compared the

models on the empirical data and, replicating Exp 1 and Exp 2 results, we found that the VS

model was the winning one (MF: 0.53, XP: 0.97, Fig 5C).

We then assessed whether participants weighted their freely obtained outcomes more than

the choices of the Demonstrator as they did in Exp 1 and Exp 2. Again, we found the private

reward learning rates significantly higher compared to the imitation learning rates (Wilcoxon

signed-rank test: V = 42747, p<2.2e−16). Finally, Exp 3 presented a novel feature such that

half of the participants were informed about the intelligence quotient (IQ; approximated by
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Raven’s progressive matrices score) of their Demonstrator (N = 150), while the other half were

not (N = 152). In this experiment, the SD (0.84±0.03 correct response rate) presented a higher

nonverbal IQ (28/30) compared to the UD (0.64±0.05 correct response rate; IQ = 15/30). This

configuration allowed us to test whether a smaller gap in the Demonstrator’s skills (roughly

20% difference in the correct response rate) is sufficient to induce a detectable modulation in

the imitation learning rate and whether the modulation is sensitive to exogenous cues signal-

ing cognitive ability.

We submitted the imitation rate to a 2-way ANOVA with IQ information (visible/hidden)

and Demonstrator’s skill as a between-subject factors, and we found a main effect (F(1,298) =

8.501, p = 0.00382) moderated by the IQ visibility factor (interaction: F(1,298) = 5.248,

p = 0.02267). Post hoc test confirmed that the imitation learning rates were significantly differ-

ent only in the “visible IQ” participants (Wilcoxon rank-sum test: W = 2092, p = 0.0002356),

but not in the “hidden IQ” participants (Wilcoxon rank-sum test: W = 2634, p = 0.7544)

(Fig 5D).

Modulation of imitation

In order to account for the modulation of imitation as a function of the Demonstrator’s skill,

we implemented a meta-learning model where Learners assess the performance of the

Fig 5. Generalizing the results. (a) Reward probabilities: In Exp 3, outcome contingencies for both stimuli were not

static, but followed a random walk (restless 2-armed bandit task). All participants were exposed to the same

contingencies. (b) Model recovery: model frequencies (blue shade) and exceedance probabilities (XP = 1) for each pair

of simulated/fitted models, based on the AIC. (c) Model comparison: model frequencies and exceedance probabilities

(XP) of the fitted models based on the AIC. Red lines: 0.25 chance level for model frequency and 0.95 threshold for

exceedance probability. (d) Parameter analysis: learning rates of the winning model VS. Left: comparison between

private (αp) and imitation (αi) learning rates. Right: comparison between imitation learning rates when observing the

UD ðαu
i Þ and the SD ðαs

iÞ.
���p<0.001, Wilcoxon test. Underlying data can be found in https://github.com/hrl-team/

mfree_imitation/. AIC, Akaike Information Criterion; DB, decision biasing; IQ, intelligence quotient; MB, model-

based imitation; NS, not significant; RW, Rescorla–Wagner; SD, Skilled Demonstrator; UD, Unskilled Demonstrator;

RW, Rescorla–Wagner; VS, value shaping.

https://doi.org/10.1371/journal.pbio.3001028.g005
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Demonstrator and adapt their imitation accordingly. Since the Demonstrator’s choice out-

comes are not directly accessible to the Learner, we postulated that the participant uses their

own value function to assess the Demonstrator’s skill on the task. The imitation rate is first ini-

tialized to 0 for every state (i.e., pair of symbols), then updated trial by trial using an auxiliary

learning rate (see “Methods”). In this framework, if the Demonstrator chooses the option that

the Learner currently believes is the best, in other words, if the Demonstrator agrees with the

Learner, the imitation rate increases. The converse is true when the Demonstrator chooses the

option that the Learner currently believes is not the best. By comparing the agreement between

Demonstrator’s choices to their own value function, the Learner is able to track a subjective

inferred skill of the Demonstrator by relying only on his own evaluation of the task, without

building an explicit model of the Demonstrator. This would provide an effective, and yet

model-free, way to infer the Demonstrator’s skill and regulate imitation accordingly.

We fitted this meta-learning model (which we label meta-VS) and compared it to the VS

model. Results show that the meta-VS model explains the participant’s choices better than the

baseline VS model in Exp 1 (MF: 0.74, XP: 0.99), and Exp 2 (MF: 0.59, XP: 0.9) (Fig 6A). We

also analyzed the resulting trial-by-trial estimates of the imitation learning rates averaged sepa-

rately for SD and the UD conditions and found that we were able to reproduce the observed

significant modulation of the imitation rates (Exp 1: Wilcoxon signed-rank test: V = 0,

p = 1.192e−07; Exp 2: Wilcoxon rank-sum test: W = 88, p = 0.0001742) (Fig 6B).

Discussion

Over 3 experiments, featuring different outcome contingencies and different ratios between

private and observational learning trials, we found that imitation takes the computational

form of VS, which implies that the choices of the Demonstrator affect the value function of the

Learner. On top of that, we found that imitation is modulated by a meta-learning process,

such that it occurs when it is adaptive (i.e., SD).

In other terms, imitation is instantiated as a model-free learning process, as it does not

require an explicit model of the Demonstrator [18]. Our conclusions are based on model com-

parison and parameter comparison analyses, whose validity is supported by having verified in

simulated data good model and parameter recoveries. Our results are robust across experi-

ments and across different implementations of the computational models. A comparison

between reward and imitation learning rates suggests that privately generated outcomes are

Fig 6. Meta-learning model. (a) Model comparison: model frequencies and exceedance probabilities (XP) of the fitted

models based on the AIC. Red lines: 0.5 chance level for model frequency and 0.95 threshold for exceedance

probability. meta-VS: meta-learning model where imitation is implemented via VS, and the imitation learning rate is

dynamically updated. (b) Average imitation learning rates of the meta-VS model: comparison between imitation

learning rates when observing the UD ðαu
i Þ and the SD ðαs

iÞ. The purple dots represent the average imitation learning

rate of the VS model. ���p<0.001, Wilcoxon test. Underlying data can be found in https://github.com/hrl-team/mfree_

imitation/. AIC, Akaike Information Criterion; SD, Skilled Demonstrator; UD, Unskilled Demonstrator; VS, value

shaping.

https://doi.org/10.1371/journal.pbio.3001028.g006
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overweighted compared to social information. Finally, in accordance with a vast body of evolu-

tionary literature indicating that, in order to be adaptive, imitation should be modulated [19],

we found that humans can correctly infer the skill of a Demonstrator and modulate their imi-

tation accordingly [7]. We proposed and tested a simple way to achieve the modulation of imi-

tation, without incurring the computational cost of building an explicit model of the

Demonstrator.

Comparing value shaping to decision biasing

DB postulates that imitation is essentially an exploration bias rather than a learning process.

By contrast, VS allows the Demonstrator’s choices to have a stronger and long-lasting influ-

ence on the Learner’s behavior, as demonstrations are progressively accumulated and stored in

the value function. A notable advantage of VS is that it can easily account for observational

learning in Pavlovian settings where no decisions are involved, while DB cannot [20,21]. Our

VS method is equivalent to the outcome bonus method that has been proposed for integrating

advice into reinforcement learning [11]. This method stipulates that the advised options are

perceived more positively and thus acquire an extra reward bonus. In the reinforcement learn-

ing literature, this strategy is called reward shaping, which corresponds to augmenting the

reward function with extra rewards in order to speed up the learning process [13,22]. How-

ever, it has been widely reported that reward shaping can lead to suboptimal solutions that fail

to account for human behavior [12,23,24]. Several solutions have been proposed to address

this problem, such as VS which affects the preference for “advised” actions without modifying

the Learner’s reward specifications [12], and policy shaping which affects the Learner’s behav-

ior without modifying its value function (note that policy shaping is different from DB as it

has a long-lasting effect) [25,26].

In our work, the term VS can be used interchangeably with reward shaping and policy

shaping. The distinction between reward shaping, VS, and policy shaping cannot be addressed

in single-step problems such as in our task. In fact, adding an extra reward bonus to an action

is equivalent to augmenting its expected value, which is equivalent to augmenting its probabil-

ity of being selected. Further research using multistep reinforcement learning paradigms is

needed to assess which of these 3 shaping methods best accounts for human behavior.

Comparing value shaping to model-based imitation

Our results show that human Learners imitate an SD by integrating the observed actions into

their own value function, without building an explicit model of the Demonstrator. This solu-

tion has the obvious advantage of being computationally simpler than MB. In our study, the

distinction between VS and MB echoes the classical distinction between model-free and

model-based methods in the reinforcement learning literature. At first view, our findings may

seem in contrast with previously reported results showing that people infer a model of a Dem-

onstrator [5,9] and can successfully predict others behavior [27]. These seemingly contradic-

tory findings can be partially explained by the fact that in these works, participants were

explicitly instructed to predict other participant’s behavior; whereas in our tasks, they were

not. So it might be that participants do not build a model of the Demonstrator unless there is a

need for it or being explicitly asked for. Moreover, in these previous works, demonstrations

were the only available source of information for the Learner, while in our task, demonstra-

tions were in competition with self-generated outcomes. As the task is defined by the out-

comes, they constitute a reference model over which other learning signals might be

integrated. VS represents a more parsimonious solution than building separate models for

every learning signal.
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More generally, we can imagine that both learning methods exist and correspond to distinct

and coexisting inference modes that are used in different contexts: When only demonstrations

are provided, inferring the Demonstrator’s goal is the only way for learning the task, whereas

in presence of another source of information (i.e., self-generated rewards), demonstrations

only play a secondary role.

Which of these learning modes is used for imitation can have distinct implications. MB

implies that people build distinct representations of the same task, one of which can be a repre-

sentation of a Demonstrator’s goal. Each representation can then influence the others, be

switched on and off, and be more or less considered by the Learner. This provides a certain

control to the Learner on the capacity to disentangle the reliability of each model. VS, on the

other hand, implies a deeper effect of imitation. People would integrate others’ behavior and

adopt their preferences as their own. This “subversive” effect of imitation can be found in

other works [28], where over-imitation is explained not as a mimicry mechanism, but by the

modification of the inner representation of the causal model of the environment.

Adaptive modulation of imitation

Our findings are consistent with the repeated observations in theoretical studies indicating

that imitation should be a controlled process [1,16,19]: For imitation to be adaptive, it should

be modulated by several environmental and social signals. Here, we focused on the Demon-

strator’s skills and found that when the Demonstrator was not skilled, the imitation learning

rate was down-regulated. In other terms, consistent with previous studies, we show that the

adaptive regulation of imitation can be achieved by monitoring endogenous signals (likely an

estimate of the Demonstrator’s performance) and does not necessarily require explicit cues

and instructions [7,8,14]. Interestingly, participants in Exp 1 were more successful in modulat-

ing their imitation of the UD compared to participants in Exp 2 (cf. Fig 3C). A possible inter-

pretation could be that participants in Exp 1 had the opportunity to compare the performance

of both type Demonstrators and thus avoid imitating the UD. In Exp 2, even though partici-

pants imitated the SD more than the UD, the effect was less strong than in Exp 1.

At the computational level, this effect can be formalized as a meta-learning process, where

relevant variables are used to optimally tune the learning parameters [29,30]. For example, this

could be achieved by tracking the difference between the reward earned following the Demon-

strator’s choices and opposite choices, then using this relative merit signal to adaptively modu-

late imitation [31]. However, in our task, imitation rates could not have been modulated by

such hypothetical comparison of the outcomes because we did not present the Demonstrator’s

outcome. We proposed and tested an alternative modulation process that is based on the eval-

uation of the Demonstrator’s choices in the light of the Learner current preferences. The basic

intuition is that if the demonstrators’ choices agree with what the learner would have done, the

learner starts to “trust” the Demonstrator. Our model is inspired by several previous empirical

findings showing that the human brain’s reward network is responsive to agreement in deci-

sions on matters of taste that have (by definition) no correct outcome [32,33]. Thus, the learner

treats the Demonstrator’s choice as a surrogate reward (VS) preferentially when they present

an overall high agreement rate.

Consistent with this hypothesis, Boorman and colleagues [34] showed that in a market pre-

diction task, learning of the expertise of another agent (the role akin to the Demonstrator in

our task) was accelerated when he/she expressed a similar judgment. The meta-learning model

managed to capture the adaptation of the imitation rate to the type of the Demonstrator across

the 2 experiments. A caveat of our implementation is that it supposes that the initial imitation

learning rate is 0, a simplifying assumption that may not reflect many real-life situations,
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where imitation is the primary source of information. It should be noted that our meta-learn-

ing framework could easily be extended by assuming an additional free parameter determining

the baseline imitation learning rate (we tested this implementation in our data, but it was

rejected due to the additional free parameter). In Exp 3, we were able to find a significant mod-

ulation of imitation only when the participants were informed about the IQ of the Demonstra-

tor. This finding indicates 2 things. First, for the case when the Demonstrator’s IQ was hidden,

the performance gap between the UD (approximately 0.65 correct choice rate) and the SD con-

ditions (approximately 0.85) was not large enough to endogenously modulate imitation. Sec-

ond, when the Demonstrator’s IQ was visible, imitation could also be controlled by exogenous

information about cognitive abilities. This finding is consistent with many studies showing

that reputational priors shape learning and decision-making at the behavioral and neural levels

[35,36].

Our model parameters analysis also showed that the imitation learning rate was smaller

compared to the private reward learning rate, even when the Demonstrator outperformed the

participant (80% average correct response rate versus <75%). This difference could derive

from the fact that the Demonstrator’s choice, as a proxy of reward, implies an additional

degree of uncertainty (one will never know whether the Demonstrator obtained a reward, after

all). This difference could also derive from an egocentric bias, where self-generated informa-

tion is systematically overweighted. Whether or not the difference between reward and imita-

tion learning rates changes as a function of task-related factors (e.g., task difficulty) or

interindividual differences (e.g., age of the participants and pathological states) remains to be

established [37–39].

What about imitation in the action space?

In our experiments, the actual motor responses (i.e., the motor action) necessary to implement

the decision of the Demonstrator were not shown. We communicated them in abstract terms.

We opted for this implementation for three reasons: we wanted to stay as close as possible to

original—and widely used—design [6]; we wanted to avoid implicit communication via body

signals and movements; and we wanted to focus on pure imitation in the choice space (please

note that an action observation protocol would also involve choice observation). However, our

experiments leave unanswered whether the same results would hold in a situation where the

Demonstrator’s actions are observable. Concerning imitation in an action–observation con-

text, we recognize two possible scenarios that will be addressed by future studies. In one sce-

nario, VS requires processing the Demonstrator’s behavior in the choice space and therefore

imitation would revert to a DB process prompted by a motor contagion process [40]. In

another scenario, imitation recycles the same VS computations in both the action and the

choice space. Therefore, as the quality and quantity of social signals increases in the action–

observation configuration, one could predict that the imitation learning rate could be as high

as the private learning rate in these contexts (thus reverting the alleged egocentric bias).

Putative neural bases

Our computational modeling results suggest that the actions of a Demonstrator constitute a

pseudo-reward, generating a reward prediction error used for updating the Learner’s value

function. Previous imaging data provided evidence consistent with this neuro-computational

hypothesis. Specifically, Lebreton and colleagues [41] showed, in a simple option valuation

task, that action observation signals (originally encoded in the human mirror neuron system

[42]) progressively affect reward-related signals in the ventral striatum and the ventral prefron-

tal cortex, two areas robustly associated with reward prediction error encoding in
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reinforcement learning [43]. This neuro-computational hypothesis is also consistent with data

showing action prediction errors in the lateral prefrontal cortex (overlapping with the mirror

neuron system) and modulation of reward-related signals in the striatum and ventral prefron-

tal cortex, when following advice [6,11,44], in tasks where imitation relies on the communica-

tion of abstract social signals (e.g., choices and not actions).

Conclusions

Our work provides robust evidence that, in the context of social reinforcement learning, imita-

tion takes the form of a computationally simple, yet long-lasting, value shaping process, where

the choices of the Demonstrator durably affect the value function of the Learner. Imitation

plays a key role in the propagation of ideas and behaviors among individuals [45]. The global

adoption of social media has exacerbated the propagation of different kinds of behaviors, span-

ning from anodyne memes and lifestyle habits, to more political [46] and economic [47] behav-

iors. These massive cascade effects can have deleterious impacts, such as political polarization

[48], diffusion of fake news [49], and even more macabre trends caused by the propagation of

dangerous behaviors [50]. Understanding the mechanisms underpinning social influence is

therefore crucial for understanding and preventing these negative effects. Our main finding is

that imitation can be understood as a modification of values rather than a bias over decisions.

The ensuing persistence of imitation may in part explain the strength and pervasiveness of phe-

nomena related to social influence. Future research will determine whether or not imitation is

impaired in social and nonsocial psychiatric conditions, such as depression, anxiety, autism,

and borderline personality disorder, and whether these hypothetical impairments take the form

of shifts in its computational implementation and/or model parameters [51].

Methods

Ethics statement

The study was approved by the local Institutional Review Board (C15-98/58-17).

Participants

Respectively 24 and 44—new—healthy participants were enrolled in our 2 experiments

(Table 1). Participants were recruited through the Relais d’Information sur les Sciences Cogni-
tives website (https://www.risc.cnrs.fr/). The inclusion criteria were being over 18 years old

and reporting no history of psychiatric and neurological illness. All study procedures were

consistent with the Declaration of Helsinki (1964, revised 2013), and participants gave their

written informed consent, prior to the experiment. Participants were reimbursed 10 to 20

EUR for their participation, depending on their performance (on average 13.9 ± 4.69 EUR).

Table 1. Demographics of the 2 cohorts of participants.

Exp 1 Exp 2

SD UD

# participants 24 22 22

# male–female 10–14 9–13 11–11

age mean (± sd) 24.5 (±3.45) 24.9 (±3.5) 26.4 (±3.9)

# same-mixed gender 9–15 9–13 10–12

# same-mixed gender, indicated whether the dyads were composed by 2 participants of the same or different genders.

sd, standard deviation; SD, Skilled Demonstrator; UD, Unskilled Demonstrator.

https://doi.org/10.1371/journal.pbio.3001028.t001
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The third experiment presented in this paper consists of previously published data. We refer to

the original publication for full details about the participants [14].

Experimental task and procedure

Both experiments implemented variants of a standard social reinforcement learning task,

where, in addition to private learning trials and conditions, the participants were sometimes

exposed to the choices of another agent. The design was based on a previous observational

reinforcement learning task [6], where we changed several features. First, as we were interested

in pure imitation (and not vicarious trial-and-error learning), we did not include observation

of the Demonstrator’s outcomes. Second, to assess both the accumulation and the propagation

of the Demonstrator’s influence, we allowed for more than 1 consecutive observational or pri-

vate learning trial (while keeping their total number equal). In fact, over both experiments, the

number of demonstrations in a row varied between 1 and 7 demonstrations, with the addi-

tional constraint of not having more than 3 consecutive demonstrations of the same option.

Third, we manipulated the Demonstrator’s performance by implementing skilled (80% of opti-

mal, i.e., reward maximizing responses) and unskilled (20% of optimal responses) behavior.

This allowed us to assess whether imitation was adaptively modulated. We did not implement

unskilled performance as 50% of optimal responses, as it would have confounded 2 factors:

optimality and variability (indeed a 50% correct Demonstrator would switch options continu-

ously, while a 20% correct Demonstrator is suboptimal but as stable as the skilled one).

Other details concerning the experimental task are provided in the Results section. Partici-

pants were recruited in pairs—either mixed or same gender—and received the instructions

jointly. Participants were tested in 2 separated cabins and took breaks at the same time. They

were asked in advance to provide an electronic version of a passport-like photo (displayed on

the upper part of each side of the computer screen) to clearly differentiate private and observa-

tional trials. They were told they would engage in a small game in which they could sometimes

observe each other’s choice in real time—but not the outcomes associated with that action.

Participants were informed that some symbols would result in winning more often than others

and were encouraged to accumulate as many points as possible. It was emphasized that they

did not play for competition but for themselves, and importantly, there was no explicit direc-

tive to observe the other player. The participants were not explicitly instructed to integrate the

choices of the other player into their own learning and decision-making, but it was explicit

that a given symbol had the same value for both participants. At the end of each session, the

experimenter came in both cabins to set the subsequent one, and participants were instructed

to begin each session at the same time. The debriefing of the experiment was done with each

pair of participants, and all participants were debriefed about the cover story after the experi-

ment. The third dataset presented in this paper comes from a previously published study [14].

The main differences between our design and theirs are summarized in Table 2 and include

Table 2. Main differences between experiments.

Exp 1 Exp 2 Exp 3

# participants 24 44 302

# trials 400 300 300

Observational:private trials 1:1 1:1 1:2

Contingencies Stable (70/30) Stable (60/40) Random walk

Demonstrators Computer Computer Real participants

Demonstrator skills 0.80 / 0.20 0.80 / 0.20 0.84 ± 0.03 / 0.60 ± 0.05

(within) (between) (between)

The Demonstrator’s skills are defined by the correct choice rate. The variability on the Demonstrator’s skills of Exp 3 is given in standard errors of the mean.

https://doi.org/10.1371/journal.pbio.3001028.t002
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reward contingencies changing on a trial-by-trial basis (random walk); the Demonstrator

choices consisted in recorded choices of previous participants playing exactly the same contin-

gencies with no social component (therefore in this experiment no deception was involved);

the ratio between observational and private trials was 1:2 (and not necessarily the same dem-

onstrations were presented to the participants); some participants (roughly 50%) received

information about the IQ (raven matrices) of the Demonstrator. We refer the readers to the

original publication for full details of the experimental task [14].

Computational modeling

We compared three hypotheses about the computational implementation of imitation in rein-

forcement learning. All 3 models are the same for learning from self-experienced outcomes.

They only differ in how they integrate demonstrations into the learning process.

Baseline model

As a baseline, we implemented an RW model that learns only from self-experienced outcomes

while ignoring demonstrations. A value function, Q, is first initialized to 0. Then, on every

time step, when the participant chooses the option c and observes an outcome r, the value of

the chosen option is updated as follows:

QðcÞ  QðcÞ þ ap � ½r � QðcÞ�; ð2Þ

where αp is a “private” reward learning rate. Action selection is performed by transforming

action values into a probability distribution through a softmax function

pðcÞ ¼
1

1þ eb�½Qð�cÞ� QðcÞ� lðcÞ:k�
; ð3Þ

where Qð�cÞ is the value of the unchosen option �c; k is a choice autocorrelation parameter [52],

and λ(c) is defined as

lðcÞ ¼
1 if c is the last performed action

� 1 otherwise

(

We compared 2 implementations of this baseline depending on how the Q-values are

updated. The first implementation, RW1, uses the value update scheme described in Eq 2. The

second implementation, RW2, is based on a symmetric value update that also updates the

value of the unchosen option in the opposite direction with

Qð�cÞ  Qð�cÞ þ ap � ½� r � Qð�cÞ�:

Decision biasing

DB builds on the baseline when it comes to learning from experienced outcomes. However,

demonstrations are also used for biasing action selection. We tested 6 different implementa-

tions of this model in order to control for some computational details that may affect the fit-

ting quality (cf. Fig 7). The first implementation, DB1, is the original model presented in [6]

and used in [7]. When a demonstration d is observed, it is used for biasing the policy π as fol-

lows. First, the policy π is derived from the value function Q via Eq 3. Then, the policy π is

modified via

pðdÞ  pðdÞ þ ai � ½1 � pðdÞ�;
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pð�dÞ  1 � pðdÞ; ð4Þ

where π(d) and pð�dÞ represent, respectively, the probability to select the demonstrated and the

non-demonstrated option, and αi an imitation decision bias rate parameter.

We refer to this update scheme as policy update. In order to control for the fact that in DB

the action prediction error is computed at the level of the policy and not the Q-values, we

devised another version, DB2, in which the action prediction error is computed based on the

Q-value (i.e., a value update). But still, this update must only affect action selection without

modifying the value function. To do so, we keep a “decision value function,” Q0, which is a

copy of the value function Q that is used only for action selection. The policy π is derived from

Q0 instead of Q. When a demonstration d is observed, it is used for biasing Q0 as follows. First,

Q0 is copied from Q. Then, it is modified via

Q0ðdÞ  Q0ðdÞ þ ai � ½1 � Q0ðdÞ�: ð5Þ

One difference between Eq 4 and Eq 5 lies in the symmetry of the update. In Eq 4, increas-

ing the probability of selecting one option naturally decreases the probability of selecting the

other option. However, in Eq 5, increasing the value of one option does not affect the value of

the alternative option. To account for this fact, we implemented an extension of DB2, in which

we also update the value of the alternative option in the opposite direction. DB3 implements a

Fig 7. Six implementations of DB. In DB1, demonstrations bias Learner’s actions via policy update. DB2 and DB3 implement the same mechanism through value

update and symmetric value update. DB4, DB5, and DB6 are equivalent to respectively DB1, DB2, and DB3, while allowing for the accumulation of successive

demonstrations. This is done by removing the first step of the update where π or Q0 is derived from Q. Accumulation is depicted in the diagrams by the loop within

observational trials. DB, decision biasing.

https://doi.org/10.1371/journal.pbio.3001028.g007
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symmetric value update via

Q0ðdÞ  Q0ðdÞ þ ai � ½1 � Q0ðdÞ�;

Q0ð�dÞ  Q0ð�dÞ þ ai � ½� 1 � Q0ð�dÞ�: ð6Þ

One common limitation of all these 3 implementations is that they do not allow the accu-

mulation of successive demonstrations, because the policy π (resp. Q0) is derived from Q each

time a demonstration is provided. To address this limitation, we extend these implementa-

tions, by removing the initial step of the update that derives π (resp. Q0) from Q. This way, suc-

cessive demonstrations within the same block accumulate their effects.

Model-based imitation

Just like DB, MB is built on the baseline for learning from self-experienced outcomes. How-

ever, demonstrations are used for building a model of the demonstrator’s preferences. This

model is then used for biasing action selection. We compared 9 different algorithmic imple-

mentations of this model (cf. Fig 8). These implementations differ in how the model of the

Demonstrator is built and how it is used for biasing action selection. We construct a 3×3

model space based on whether each step uses a policy update (Eq 4), a value update (Eq 5), or a

symmetric value update (Eq 6). To note, a symmetric value update of the Demonstrator’s

model corresponds to the approximate inverse reinforcement learning algorithm implemented

in [9]. In all 9 implementations, the Demonstrator’s model is updated with a learning rate αd
and used for biasing action selection with an imitation decision bias αi. Finally, for each of

these 9 implementations, we compared 2 versions, one where αd is fitted as a free parameter,

and one where it is fixed to 0.1 (cf. S5 Fig).

Fig 8. Nine implementations of MB. In observation trials, demonstrations are used for building a model of the Demonstrator (πD or QD). This is done either

through policy update (MB1, MB2, and MB3), value update (MB4, MB5, and MB6), or symmetric value update (MB7, MB8, and MB9). In private trials, the model of

the Demonstrator is used for biasing Learner’s actions through either policy update (MB1, MB4, and MB7), value update (MB2, MB5, and MB8), or symmetric value

update (MB3, MB6, and MB9). MB, model-based imitation; PU, policy update; SVU, symmetric value update; VU, value update.

https://doi.org/10.1371/journal.pbio.3001028.g008
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Value shaping

In VS, demonstrations are directly integrated in the Learner’s value function by reinforcing

the demonstrated actions. We compared 2 implementations of this model. VS1 performs a

value update via

QðdÞ  QðdÞ þ ai � ½1 � QðdÞ� ð7Þ

VS2 performs a symmetric value update by also updating the value of the non-demon-

strated option via

Qð�dÞ  Qð�dÞ þ ai � ½� 1 � Qð�dÞ�; ð8Þ

Meta-learning

To account for the dynamic modulation of the imitation learning rate, we designed a meta-

learning model. The core idea of the model is that the skill of the Demonstrator is inferred by

comparing her choices to the current knowledge of the Learner. The imitation learning rate αi
in the meta-learning model (meta-VS) is first initialized at 0 for every state (i.e., pair of cues).

Then, αi is dynamically modulated on a trial-by-trial basis depending on whether or not the

current observed action maximizes the Learner’s Q-values. The modulation is performed

using an auxiliary learning rate αm that measures how fast a participant learns about the

approximate skill of the Demonstrator:

aiðsÞ  aiðsÞ þ am � ðt � aiðsÞÞ;

where s represents the current state (pair of cues), and

t ¼
1 if QðdÞ ¼ maxðQðdÞ;Qð�dÞÞ

0 otherwise

(

Note that, in meta-VS, αm is a free parameter, whereas αi is not. The imitation rate is then

used for updating the Learner’s value function through value-shaping using Eqs 7 and 8.

Model fitting procedure

Model comparison and parameter optimization. In a first phase, we compared the dif-

ferent implementations of each model. The best implementation was then included in the final

model space for comparison (cf. S2 Fig).

Each model was fitted separately to the behavioral data of our 3 experiments. First, the free

parameters of each model were optimized as to maximize the likelihood of the experimental

data given the model. To do so, we minimize the negative log-likelihood using the fmincon
function in Matlab, while constraining the free parameters within predefined ranges

(0<α<1,0<β<+1). The negative log-likelihood NLL is defined as

NLL ¼ � logðPðDatajParameters;ModelÞÞ:

Then, from the negative log-likelihood we derive the Akaike Information Criterion (AIC)

[53] defined as

AIC ¼ � NLL � p;

where p is the number of free parameters.
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The AIC is—with other metrics—a commonly used metric for estimating the quality of fit

of a model while accounting for its complexity. As such, it provides an approximation of the

out-of-sample prediction performance [54]. We selected the AIC as a model comparison met-

ric after comparing its performance in model recovery along with other metrics (see below).

Finally, the individual AIC scores were fed into the mbb-vb-toolbox as an approximation of

model log-evidence [55]. Contrary to fixed-effect analyses that average the criteria for each

model, the random-effect model selection allows the investigation of interindividual differ-

ences and to discard the hypothesis of the pooled evidence to be biased or driven by some indi-

viduals—i.e., outliers [56]. This procedure estimates the model expected frequencies and the

exceedance probability for each model within a set of models, given the model log-evidence

for each participant. The expected frequency is the probability of the model to generate the

data obtained from any randomly selected participant—it is a quantification of the posterior

probability of the model (PP). It must be compared to chance level, which is one over the num-

ber of models in the model space. The exceedance probability (XP) is the probability that a

given model fits the data better than all other models in the model space. Theoretically, a

model with the highest expected frequency and the highest exceedance probability is consid-

ered as “the winning model.”

Model parameters were estimated by maximizing the Log Posterior Probability (LPP):

LPP ¼ logðPðParametersjData;ModelÞÞ

LPP maximization includes priors over the parameters (inverse temperature gamma (1.2,5);

LR beta (1.1.,1.1). Essentially, it avoids wrongful fitting of the parameters estimates that could

be driven by noise. The same priors were used for all learning rates to avoid bias in learning rate

comparison. Of note, the priors are based on previous literature [70] and have not been chosen

for this study. While the LPP, in principle, could be used to compare models (as it integrates the

probability of the parameters, therefore penalizing a higher number of parameters), it is usually

not a very stringent criterion (especially when the parameter priors are weakly informative).

Accordingly, in our case, it did not give a very good model recovery (cf. S9 Fig).

Model recovery

The main aim of the model recovery procedure is to verify that the models that we try to com-

pare can effectively be distinguished given the experimental data and the model fitting proce-

dure. It could be the case that 2 competing models are not sufficiently different from each

other to be effectively distinguished or that the experimental design is not appropriate for elic-

iting any difference between these models.

Model recovery consists in running several simulations of each model with the historical

data of each participant, i.e., the observed stimuli and demonstrations. Model parameters are

initialized randomly according to their respective prior distributions. This allows us to have a

ground truth about which model has generated each piece of data. After simulation, we run

the model fitting procedure on the data generated by each model and report the model fre-

quency and exceedance probability of each competing model. If the exceedance probability of

the model that has generated the data passes a predefined threshold, it means that our model

fitting procedure allows us to recover the true generating model. Our model recovery analysis

confirmed that, in our task and for our models, the AIC is a good criterion, while LPP is not.

Parameter recovery and comparison between parameters

Parameter recovery is a useful way to assess the quality of the parameter fitting procedure. To

do this, we computed the Spearman correlation between parameter values that were used for
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generating simulated data, with the values recovered by the model fitting procedure. A high

correlation score indicates a reliable parameter fitting procedure. The good parameter discov-

ery displayed by the winning model indicated that their estimates are meaningful and can be

statistically compared. As assumptions about normal distributions were not verified, we used

nonparametric tests for comparing model parameters. Wilcoxon signed-rank test was used for

comparing paired learning rates, such as private versus imitation learning rates (Fig 3C) and

skilled versus unskilled imitation learning rates in Exp 1 (Fig 3C). Wilcoxon rank-sum test was

used for non-paired learning rates, such as skilled versus unskilled imitation learning rates in

Exp 2 (Fig 3C).

Supporting information

S1 Fig. Raw task performance on both experiments, with respect to conditions. P private

condition. SD and UD observational conditions. In Exp 1, task performance in the SD condi-

tion was higher than in the Private condition (P), which itself was higher than performance in

the UD condition. However, this difference in performance was not statistically significant. In

Exp 2, the differential in task performance between observational and private conditions was

statistically different between the SD and the UD group. Underlying data can be found in

https://github.com/hrl-team/mfree_imitation/. SD, Skilled Demonstrator; UD, Unskilled

Demonstrator.

(TIF)

S2 Fig. Intermediate model comparisons. We compared different implementations of each

model: 2 for RW, 6 for DB, 9 for MB, and 2 for VS. For the baseline, implementing a symmet-

ric value update (RW2) improves the model fitting quality in Exp 1. For DB, the best fitting

performance is achieved when allowing for symmetric value update from observed demonstra-

tions and for the accumulation of successive demonstrations (DB6). For MB, the best imple-

mentations use the model of the Demonstrator for biasing Learner’s actions through

symmetric value update (MB3 and MB9 in Exp 1 and MB6 in Exp 2). A finer comparison

between MB3 and MB9 in both experiments shows that these models are equivalent (not

shown here). A further comparison between MB6 and MB9 in both experiments shows that

MB9 fits better than MB6. Finally, the best VS implementation, VS2, uses a symmetric value

update from observed demonstrations. As a result of this analysis, the final model space

includes RW2, DB6, MB9, and VS2. Underlying data can be found in https://github.com/hrl-

team/mfree_imitation/. DB, decision biasing; MB, model-based imitation; RW, Rescorla–

Wagner; VS, value shaping.

(TIF)

S3 Fig. Model comparison results are robust among different implementations of the

model space. (a) Model space implementation without choice autocorrelation parameter. (b)

Model space implementation without symmetric value update for private learning. (c) Model

space implementation allowing for negative imitation learning rates. Note that in Exp 2, when

allowing for negative learning rates, the winning model in the UD condition is no longer RW,

but VS. Underlying data can be found in https://github.com/hrl-team/mfree_imitation/. RW,

Rescorla–Wagner; UD, Unskilled Demonstrator; VS, value shaping.

(TIF)

S4 Fig. Parameter comparison between UD and SD conditions. No statistical difference was

found for nonsocial parameters αp, κ, and β. Only the imitation learning rate αi was statisti-

cally different across observational conditions in both experiments. Underlying data can be

found in https://github.com/hrl-team/mfree_imitation/. SD, Skilled Demonstrator; UD,
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Unskilled Demonstrator.

(TIF)

S5 Fig. Model comparison between alternative implementations of MB. Specifically, imple-

mentations with a fixed parameter αd = 0.1 (MB3, MB6, and MB9) are better than implemen-

tations with αd as a free parameter (MB3+, MB6+, and MB9+, respectively). αd is the learning

rate used for inferring the preferences of the Demonstrator. Underlying data can be found in

https://github.com/hrl-team/mfree_imitation/. MB, model-based imitation.

(TIF)

S6 Fig. Model properties. Accumulation (top row): behavioral imitation rate calculated as a

function of the 2 preceding demonstrations (dt−1, dt−2). Propagation (bottom row): behavioral

imitation rate calculated as a function of 2 consecutive choices (ct+1, ct+2). �p<0.05, ��p<0.01,
���p<0.001, paired t test. Underlying data can be found in https://github.com/hrl-team/

mfree_imitation/.

(TIF)

S7 Fig. Model predictions. Across-trial correlation between the observed and model-pre-

dicted choices. Results are given as Spearman’s correlations. Underlying data can be found in

https://github.com/hrl-team/mfree_imitation/.

(TIF)

S8 Fig. Model predictions. Across-subject correlation between the observed and model-pre-

dicted choices. Results are given as Spearman’s correlations. Underlying data can be found in

https://github.com/hrl-team/mfree_imitation/.

(TIF)

S9 Fig. Model recovery using different approximations of model log-evidence for the main

computational models. We tested different approximations of the model evidence that we fed

to the Variational Bayesian Analysis toolbox. (a) AIC. (b) log-likelihood. (c) log posterior

probability. Only AIC displayed a good parameter recovery. AIC, Akaike Information Crite-

rion.

(TIF)

S10 Fig. Model comparison using the likelihood as approximation of the model evidence

and restricting the comparison to the 3 imitation models. We compared the main imitation

models (DB, MB, and VS) with maximum likelihood because they present the same number of

free parameters. Underlying data can be found in https://github.com/hrl-team/mfree_

imitation/.

(TIF)
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