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Abstract

The current quantitative reverse transcription PCR (RT-qPCR) assay recommended for

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing in the United

States requires analysis of 3 genomic targets per sample: 2 viral and 1 host. To simplify test-

ing and reduce the volume of required reagents, we devised a multiplex RT-qPCR assay to

detect SARS-CoV-2 in a single reaction. We used existing N1, N2, and RP primer and

probe sets by the Centers for Disease Control and Prevention, but substituted fluorophores

to allow multiplexing of the assay. The cycle threshold (Ct) values of our multiplex RT-qPCR

were comparable to those obtained by the single assay adapted for research purposes. Low

copy numbers (�500 copies/reaction) of SARS-CoV-2 RNA were consistently detected by

the multiplex RT-qPCR. Our novel multiplex RT-qPCR improves upon current single diag-

nostics by saving reagents, costs, time, and labor.

Introduction

The ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) and associated coronavirus disease 2019 (COVID-19) has caused more than 25

million infections and killed more than 850,000 people as of September 2, 2020, and the virus

continues to spread throughout the globe [1]. In the absence of a specific vaccine or effective

therapy for the treatment of COVID-19, public health infection prevention measures, includ-

ing contact tracing and isolation measures, are currently our only tool to stem transmission.

However, testing, contact tracing, and isolation measures require rapid and widespread
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testing. Here, we improved a quantitative reverse transcription PCR (RT-qPCR) assay for the

detection of SARS-CoV-2 to allow for more rapid and widespread testing.

While a number of primer and probe sets for the detection of SARS-CoV-2 RNA by RT-qPCR

have become available since the identification of this novel virus, their broad deployment has been

hampered partially by the availability of testing reagents. The current RT-qPCR assay developed

by the Centers for Disease Control and Prevention (CDC) targets 2 different conserved segments

of the viral nucleocapsid gene (N1 and N2) as well as the human RNase P gene as a sampling con-

trol [2]. This protocol therefore requires 3 reactions to be performed per patient sample, which, in

addition to requiring a large amount of resources, also increases the chance for error. In an effort

to reduce reagents, time, potential error, and labor per sample, we devised a multiplex RT-qPCR

for the detection of SARS-CoV-2. To do this, we utilized the existing N1 and N2 primer and

probe sets published by the CDC; however, we substituted different fluorophores to enable multi-

plexing. We found the accuracy and specificity of this method to be similar to those of single RT-

qPCR. Therefore, this novel multiplex RT-qPCR assay provides equivalent diagnostic accuracy to

current single methods in fewer reactions and utilizes less reagents and time.

Results

Determination of lower limit of virus concentration detected by multiplex

RT-qPCR

The limit of detection (LOD) was analyzed using 10-fold serial dilutions of full-length SARS-

CoV-2 RNA into RNA extracted from pooled nasopharyngeal swabs from SARS-CoV-2-nega-

tive human samples. The cycle threshold (Ct) values and detection rates are shown in Table 1.

The slope of the standard curves for N1 and N2 were −3.36 and −3.52, respectively. The ampli-

fication efficiency was above 90% for both primer–probe sets (Fig 1A). All primer–probe sets

and conditions were able to detect SARS-CoV-2 at 500 virus copies per reaction (Table 1).

These data are consistent with previous studies [3,4].

Comparison of performance of multiplex and single RT-qPCR

To confirm the sensitivity of the primer–probe sets (FAM, HEX, and Cy5 fluorophores) tested

as single or multiplex reactions, as well as in comparison to the original single assay (FAM), we

used nasopharyngeal swab and saliva samples from COVID-19 patients to detect SARS-CoV-2

RNA. The Ct values generated by the multiplex RT-qPCR were similar to those generated with

FAM only or multicolor single RT-qPCR (Fig 1B; Table 2). These data indicated that our RT-

qPCR with multicolor fluorophores under singleplex and multiplex conditions has similar per-

formance for the detection of SARS-CoV-2 RNA as the currently utilized single RT-qPCR.

Table 1. Lower limit of detection of SARS-CoV-2 in multiplex RT-qPCR.

Copies/reaction Ct: average (SD) Detected/tested (%)

N1 N2 N1 N2

5 39.24 (0.38) 39.63 3/20 (15) 1/20 (5)

50 38.59 (0.64) 38.51 (0.84) 12/20 (60) 5/20 (25)

500 36.50 (0.63) 36.67 (0.87) 20/20 (100) 20/20 (100)

5,000 32.56 (0.30) 32.20 (0.27) 20/20 (100) 20/20 (100)

50,000 28.70 (0.22) 28.23 (0.17) 20/20 (100) 20/20 (100)

Ct, cycle threshold; RT-qPCR, quantitative reverse transcription PCR; SARS-CoV-2, severe acute respiratory

syndrome coronavirus 2.

https://doi.org/10.1371/journal.pbio.3000867.t001
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Fig 1. The qualification of multiplex RT-qPCR for SARS-CoV-2 compared with single RT-qPCR. (A) Multiplex RT-qPCR detection of

SARS-CoV-2 N1 and N2 genes was validated using 10-fold dilutions of viral RNA into pooled negative NP samples. We measured sensitivity

and efficiency for 20 replicates. Data are mean ± SD. Individual values are indicated in Table 1. (B) The Ct values for 4 independent COVID-

19 inpatients’ NP (n = 2) or saliva (n = 2) samples, 1 negative control, and 1 positive control (P) (103 virus copies/μl) were compared between

single RT-qPCR (FAM only), multicolor single RT-qPCR (Singleplex), and multiplex RT-qPCR (Multiplex). The dotted line indicates the

cutoff Ct value of 38. Negative control was undetectable. Individual values are indicated in Table 2. (C) Forty-two RNA templates from NP

swabs and saliva samples obtained from COVID-19 inpatients or healthcare workers and positive control (P) (103 virus copies/μl) were

investigated via single and multiplex RT-qPCR. The dotted line indicates the cutoff Ct value of 38. Individual values are indicated in Table 3.
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Comparison of single and multiplex assay sensitivity in clinical samples

To evaluate the accuracy of our RT-qPCR multiplex assay, we tested RNA extracted from naso-

pharyngeal swabs and saliva samples obtained from a total of 59 samples, including 38 SARS-

CoV-2-positive inpatients and 21 SARS-CoV-2-negative healthcare workers. The results of

our multiplex RT-qPCR were 100% sensitive as compared with single RT-qPCR (Fig 1C;

Table 3). These data show that our multiplex RT-qPCR method could provide an alternative to

the detection of SARS-CoV-2 by currently published single methods.

Discussion

We improved an existing research single RT-qPCR method using the CDC primer–probe sets

for multiplex RT-qPCR for molecular diagnostic testing of SARS-CoV-2. This multiplex RT-

qPCR approach simultaneously detected the CDC-recommended 2 gene segments of SARS-

CoV-2 RNA (N1 and N2) and the internal control human RNase P gene in a single reaction for

research purposes. This method performed as well as the single RT-qPCR on clinical samples

and was highly sensitive for detecting all target genes. Generally, an important consideration for

this multiplex RT-qPCR approach is that cycling conditions may vary depending on qPCR

machines, sample type, and target gene. We therefore recommend that when implementing

new assays, primer and probe concentrations should be optimized to individual lab conditions.

The CDC primer and probe sets for SARS-CoV-2 testing are recommended for clinical testing

in the US [2]. We reported sensitivity of CDC primer and probe sets compared with others from

the Chinese Center for Disease Control and Prevention [5], Charité Institute of Virology, Univer-

sitätsmedizin Berlin [6], and Hong Kong University [7]. In single RT-qPCR, the CDC N2 primer

set has a lower detection capability than the CDC N1 primers [3]. Our multiplex RT-qPCR assay

also showed that N1 and N2 primer–probe sets had detection rates of 60% and 25%, respectively,

at 50 virus copies per reaction (Table 1). While the analytical sensitivity is important to define for

a given diagnostic test, very low viral copy numbers are unlikely to reflect infectious viral load [8].

The SARS-CoV-2 pandemic has already claimed the lives of over 400,000 people, and halted

the global economy and changed our daily lives worldwide. Given the lack of available thera-

peutics or vaccines, we rely on public health measures such as testing, contact tracing, and

quarantine. A rapid and accurate diagnostic test that is not cost prohibitive to identify infected

individuals is urgently needed. Our multiplex RT-qPCR protocol described in this study pro-

vides rapid and highly sensitive detection of SARS-CoV-2 RNA for research purposes. In the

COVID-19, coronavirus disease 2019; Ct, cycle threshold; E, amplification efficiency; NP, nasopharyngeal; P, positive control; R2, regression

coefficient value; RT-qPCR, quantitative reverse transcription PCR; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

https://doi.org/10.1371/journal.pbio.3000867.g001

Table 2. Comparison of Ct values between single and multiplex RT-qPCR.

Sample Single (only FAM) Single Multiplex

N1 N2 RP N1 N2 RP N1 N2 RP

NP_1 31.78 33.31 24.28 31.44 31.58 22.75 31.73 32.30 22.89

NP_2 20.73 22.19 27.29 20.25 19.75 25.69 20.34 19.96 25.20

Saliva_1 26.01 27.24 23.48 25.93 26.27 22.03 26.26 26.23 22.39

Saliva_2 30.58 32.04 21.69 31.15 31.33 20.59 31.41 32.08 20.94

P 31.68 33.4 ND 32.60 32.80 ND 32.17 32.17 ND

N ND ND ND ND ND ND ND ND ND

Ct, cycle threshold; N, negative control; ND, not detected P, positive control (103 virus copies/μl); RP, human RNase P; RT-qPCR, quantitative reverse transcription

PCR.

https://doi.org/10.1371/journal.pbio.3000867.t002
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Table 3. The Ct values and results from the multiplex assay in clinical samples.

Sample Sample type Single (FAM) Multiplex Delta Ct (multiplex versus

single)

N1 N2 RP Result N1 N2 RP Result N1 N2 RP

1 NP 32.29 32.96 23.99 Positive 33.01 33.06 23.62 Positive 0.72 0.10 −0.37

2 NP 29.65 30.78 25.51 Positive 30.50 30.58 25.00 Positive 0.85 −0.20 −0.51

3 NP 31.52 33.29 31.41 Positive 33.20 33.24 32.16 Positive 1.68 −0.05 0.75

4 NP 24.4 25.07 24.82 Positive 25.24 25.02 24.23 Positive 0.84 −0.05 −0.59

5 NP 19.57 20.24 23.94 Positive 19.58 19.13 22.20 Positive 0.01 −1.11 −1.74

6 NP 35.33 36.72 23.93 Positive 35.36 36.37 22.98 Positive 0.03 −0.35 −0.95

7 NP 34.46 36.03 26.27 Positive 35.37 35.34 25.46 Positive 0.91 −0.69 −0.81

8 NP 24.13 25.13 26.49 Positive 24.03 23.73 25.20 Positive −0.10 −1.40 −1.29

9 NP 24.9 25.91 27.34 Positive 24.90 24.63 25.78 Positive 0.00 −1.28 −1.56

10 NP 31.31 32.41 28.67 Positive 31.21 31.12 27.64 Positive −0.10 −1.29 −1.03

11 NP 26.07 27.02 26.82 Positive 25.83 25.58 25.09 Positive −0.24 −1.44 −1.73

12 NP 34.15 36.31 27.34 Positive 35.15 35.45 26.65 Positive 1.00 −0.86 −0.69

13 NP 36.32 37.37 26.35 Positive 36.40 37.44 25.03 Positive 0.08 0.07 −1.32

14 NP 32.03 33.32 26.8 Positive 32.20 32.15 25.35 Positive 0.17 −1.17 −1.45

15 Saliva 34.39 35.99 24.38 Positive 34.35 34.91 22.80 Positive −0.04 −1.08 −1.58

16 Saliva 32.34 33.77 24.19 Positive 32.09 32.47 22.41 Positive −0.25 −1.30 −1.78

17 Saliva 30.98 32.23 21.33 Positive 33.02 34.14 21.02 Positive 2.04 1.91 −0.31

18 Saliva 15.63 16.36 22 Positive 15.73 15.13 21.36 Positive 0.10 −1.23 −0.64

19 Saliva 18.46 19.38 21.87 Positive 19.51 19.36 21.25 Positive 1.05 −0.02 −0.62

20 Saliva 26.86 27.86 21.82 Positive 27.53 27.42 21.29 Positive 0.67 −0.44 −0.53

21 Saliva 23.22 24.25 22.11 Positive 24.40 24.50 22.07 Positive 1.18 0.25 −0.04

22 Saliva 20.86 21.75 24.5 Positive 20.70 20.41 22.77 Positive −0.16 −1.34 −1.73

23 Saliva 33.03 34.25 24.95 Positive 33.25 33.95 24.02 Positive 0.22 −0.30 −0.93

24 Saliva 20.77 21.7 25.25 Positive 20.53 20.23 23.29 Positive −0.24 −1.47 −1.96

25 Saliva 33.17 34.56 21.53 Positive 35.29 37.28 20.58 Positive 2.12 2.72 −0.95

26 Saliva 33.46 35.2 28.07 Positive 33.82 34.23 27.22 Positive 0.36 −0.97 −0.85

27 Saliva 33.63 34.81 22.87 Positive 33.54 35.68 21.68 Positive −0.09 0.87 −1.19

28 Saliva 20.59 22.09 22.83 Positive 25.92 25.16 21.54 Positive 5.33 3.07 −1.29

29 Saliva 25.24 26.79 20.72 Positive 25.89 26.31 19.26 Positive 0.65 −0.48 −1.46

30 Saliva 34.6 36.07 23.75 Positive 34.59 35.60 22.53 Positive −0.01 −0.47 −1.22

31 Saliva 24.97 26.16 24 Positive 24.60 24.83 22.81 Positive −0.37 −1.33 −1.19

32 Saliva 34.21 35.55 23.77 Positive 34.46 35.93 22.92 Positive 0.25 0.38 −0.85

33 Saliva 28.31 29.86 22.65 Positive 28.63 31.37 21.63 Positive 0.32 1.51 −1.02

34 Saliva 32.43 34.66 20.51 Positive 33.29 36.23 19.84 Positive 0.86 1.57 −0.67

35 Saliva 24.84 25.77 22.39 Positive 23.91 24.6 21.44 Positive −0.93 −1.17 −0.95

36 Saliva 23.43 24.04 25.78 Positive 22.14 22.16 24.11 Positive −1.29 −1.88 −1.67

37 Saliva 35.07 35.66 23.54 Positive 33.75 35.64 22.49 Positive −1.32 −0.02 −1.05

38 Saliva 27.84 29.17 20.5 Positive 27.09 29.08 19.62 Positive −0.75 −0.09 −0.88

39 NP ND ND 29.6 ND ND ND 28.78 ND −0.82

40 NP ND ND 27.03 ND ND ND 26.09 ND −0.94

41 NP ND ND 29.86 ND ND ND 29.24 ND −0.62

42 NP ND ND 29.34 ND ND ND 28.50 ND −0.84

43 NP ND ND 29.54 ND 39.02 ND 23.55 ND −5.99

44 NP ND ND 27.9 ND 39.74 ND 26.83 ND −1.07

45 NP ND ND 30.05 ND 39.87 ND 29.42 ND −0.63

(Continued)
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future, Food and Drug Administration approval of such multiplex PCR techniques for clinical

testing could provide a cost-effective solution to mass testing.

Materials and methods

Ethics statement

This study was approved by Yale Human Research Protection Program Institutional Review

Boards (FWA00002571, Protocol ID. 2000027690). Informed consent was obtained from all

enrolled patients and healthcare workers.

Clinical samples

Clinical samples from SARS-CoV-2-positive inpatients (who were previously tested positive

by a CLIA-certified laboratory prior to enrollment) and healthcare workers at Yale New

Haven Hospital were collected as part of Yale’s IMPACT biorepository. RNA was extracted

from nasopharyngeal and saliva samples using the MagMax Viral/Pathogen Nucleic Acid Iso-

lation Kit (Thermo Fisher Scientific, Waltham, MA, US), according to a modified protocol [4].

Control samples

Full-length SARS-CoV-2 RNA (WA1_USA strain from University of Texas Medical Branch;

GenBank: MN985325) [9] was used as positive control for validation. Total RNA extracted

from human embryonic kidney cell line 293T was used for detection of internal host gene

control.

Table 3. (Continued)

Sample Sample type Single (FAM) Multiplex Delta Ct (multiplex versus

single)

N1 N2 RP Result N1 N2 RP Result N1 N2 RP

46 NP ND ND 27.86 ND 39.17 ND 26.87 ND −0.99

47 NP ND ND 31.78 ND 39.03 ND 30.73 ND −1.05

48 NP ND ND 28.68 ND 39.98 ND 27.59 ND −1.09

49 NP ND ND 30.87 ND 38.99 ND 30.7 ND −0.17

50 Saliva ND ND 24.56 ND ND ND 23.15 ND −1.41

51 Saliva ND ND 25.35 ND ND ND 23.96 ND −1.39

52 Saliva ND ND 24.9 ND ND ND 23.63 ND −1.27

53 Saliva ND ND 26.38 ND ND ND 25.12 ND −1.26

54 Saliva ND ND 22.93 ND 38.76 ND 22.63 ND −0.30

55 Saliva ND ND 24.2 ND 38.72 ND 23.22 ND −0.98

56 Saliva ND ND 23.27 ND 39.9 ND 22.16 ND −1.11

57 Saliva ND ND 23.96 ND 39.11 ND 23.05 ND −0.91

58 Saliva ND ND 22.38 ND 39.07 ND 24.2 ND 1.82

59 Saliva ND ND 27.58 ND 38.63 ND 26.46 ND −1.12

P 31.78 34.00 ND 33.10 32.86 ND 1.32 −1.14

Average 0.41 −0.29 −1.03

SD 1.13 1.17 0.89

Ct, cycle threshold; ND, not detected; NP, nasopharyngeal; P, positive control (103 virus copies/μl); RP, human RNase P.

https://doi.org/10.1371/journal.pbio.3000867.t003
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Single and multiplex RT-qPCR

All reactions were performed on a CFX96 Touch instrument (Bio-Rad, Hercules, CA, US)

using Luna Universal Probe One-Step RT-qPCR Kit (New England BioLabs, Ipswich, MA,

US) according to the manufacturer’s protocol. A final reaction volume of 20 μl containing 5 μl

of template was used. The following cycling conditions were applied: a cDNA synthesis step

(10 min/55˚C), a hold step (1 min/95˚C), and subsequently 45 cycles of denaturation (10 s/

95˚C) and annealing/elongation (30 s/55˚C). Nuclease-free water was used as the non-tem-

plate control. The primer pairs and probes for single and multiplex RT-qPCR are shown in

Table 4. We calculated the analytic efficiency of RT-qPCR assays tested with full-length SARS-

CoV-2 RNA using the following formula:

E ¼ 100� 10
� 1
slope � 1

� �

Analytical sensitivity

LOD was determined using full-length SARS-CoV-2 RNA. Viral RNA was 10-fold serially

diluted in pooled nasopharyngeal swabs from SARS-CoV-2-undetected human samples at the

following concentrations: 1, 10, 100, 1,000, and 10,000 copies/μl. The LOD was defined as the

lowest RNA concentration detected in all of 20 replicates. Ct values over 40 were removed

from analysis as non-detected.

Data availability

All data associated with this manuscript are either included in the tables or made available

upon request.
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